
Sapphire RISC-V SoC Hardware
and Software User Guide

UG-RISCV-SAPPHIRE-v4.2
November 2022
www.elitestek.com

Copyright © 2022. All rights reserved. 易灵思, the 易灵思 logo, the 钛金系列 logo, Quantum, Trion, and Efinity are trademarks of 易灵思,
Inc. All other trademarks and service marks are the property of their respective owners. All specifications subject to change without
notice.

Sapphire RISC-V SoC Hardware and Software User Guide

Contents
Introduction..v

VexRiscv RISC-V Core... v
Required Software...vi
Required Hardware..vii

Chapter 1: Install Software and SoC.. 8
Install the Efinity® Software..8
Install the RISC-V SDK... 8
Install the Java JRE.. 9

Chapter 2: IP Manager..10
Customizing the Sapphire SoC...12
Modify the Bootloader.. 17

Chapter 3: Program the Board with the Sapphire RTL Design...18
About the Example Design..18
Enable the On-Board 10 MHz Oscillator (T120 BGA324 Board)...19
Enable the LPDDR4x Memory (Ti180 M484 Board)..20
Installing USB Drivers...20
Program the Development Board... 21

Chapter 4: Simulate... 22

Chapter 5: Launch Eclipse.. 23
Set Global Environment Variables... 23

Chapter 6: Create and Build a Software Project...25
Create a New Project... 25
Import Project Settings (Optional)..25
Enable Debugging...26
Build.. 26

Chapter 7: Debug with the OpenOCD Debugger...28
Launch the Debug Script..28
Debug...28
Debug - Multiple Cores.. 29

Chapter 8: Boot Sequence..31
Boot Sequence: Case A...31
Boot Sequence: Case B... 33
Boot Sequence: Case C... 34
Booting Multiple Cores... 34

Chapter 9: Create Your Own RTL Design...36
Target another FPGA.. 36
Target another 易灵思 Board... 36
Target Your Own Board...37
Create a Custom AXI4 Slave Peripheral.. 38
Create a Custom APB3 Peripheral...38
Use another DDR DRAM Module (Trion Only)...38
Use the I2C Interface for DDR Calibration... 38
Remove Unused Peripherals from the RTL Design... 39

Chapter 10: Create Your Own Software...40
Deploying an Application Binary...40

Boot from a Flash Device.. 40
Boot from the OpenOCD Debugger..41
Copy a User Binary to Flash (Efinity Programmer)...41

About the Board Specific Package..42

www.elitestek.com

Sapphire RISC-V SoC Hardware and Software User Guide

Address Map... 43
Example Software.. 46

Axi4Demo Design..47
apb3Demo..47
compatibilityDemo..47
coreTimerInterruptDemo.. 47
coremark... 47
customInstructionDemo..48
dhrystone Example... 49
fpuDemo...49
gpioDemo...49
i2cDemo Example..50
i2cSlaveDemo Design.. 50
memTest Example... 50
nestedInterruptDemo...50
openocdServer... 51
smpDemo... 51
spiReadFlashDemo Example..51
spiWriteFlashDemo Example...52
spiDemo Example... 52
uartEchoDemo..52
UartInterruptDemo Example...52
userInterruptDemo Example... 52
userTimerDemo..53
FreeRTOS Examples.. 53
freertosUartInterruptDemo Example..54

Chapter 11: Using a UART Module...55
Using the On-board UART ()...55
Set Up a USB-to-UART Module (Trion)...55
Open a Terminal...56
Enable Telnet on Windows.. 57

Chapter 12: Using a Soft JTAG Core for Example Designs... 58
Connect the FTDI Cable..59

Chapter 13: Migrating to the Sapphire SoC..61
Migrating to the Sapphire SoC v2.0 from a Previous Version.. 61
Migrating Ruby, Jade, and Opal to the Sapphire SoC... 63

Chapter 14: Troubleshooting... 70
Error 0x80010135: Path too long (Windows)..70
OpenOCD Error: timed out while waiting for target halted.. 70
Memory Test..71
OpenOCD error code (-1073741515)...72
OpenOCD Error: no device found...72
OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO... 73
OpenOCD Error: target 'fpga_spinal.cpu0' init failed...73
Eclipse Fails to Launch with Exit Code 13..73
Efinity® Debugger Crashes when using OpenOCD... 73
Undefined Reference to 'cosf'.. 74
Exception in thread "main"..74

Chapter 15: API Reference... 75
Control and Status Registers...75
GPIO API Calls...76
I2C API Calls...78
I/O API Calls.. 84
Core Local Interrupt Timer API Calls..85
User Timer API Calls...86
PLIC API Calls.. 87
SPI API Calls...87

www.elitestek.com

SPI Flash Memory API Calls.. 89
UART API Calls..93
Handling Interrupts...95

Appendix: Re-Generate the Memory Initialization Files Manually..98
Appendix: Import the Debug Configuration..99
Appendix: Copy a User Binary to the Flash Device (2 Terminals)....................................... 100
Revision History.. 102

Sapphire RISC-V SoC Hardware and Software User Guide

Introduction

易灵思 provides a soft configurable RISC-V SoC, called Sapphire, that you can
implement in Trion® or 钛金系列 FPGAs. This user guide describes how to:
● Build RTL designs using the Sapphire RISC-V SoC using an example design

targeting an 易灵思® development board, and how to extend the example for
your own application.

● Set up the software development environment using an example project,
create your own software based on example projects, and use the API.

Note: The Sapphire SoC v2.0, released with the Efinity software v2021.2, has significant improvements from
previous versions, and you cannot migrate an existing design to it automatically. 易灵思 recommends that
you use v2.0 or higher for all new designs. You can continue to use previous versions with the Efinity software
v2021.1. If you want to migrate an existing design to v2.0, refer to Migrating to the Sapphire SoC v2.0 from
a Previous Version on page 61.

Figure 1: Designing Hardware and Software for the Sapphire RISC-V SoC

FPGA

RTL Design
RISC-V SoC

Eclipse IDE

GCC Toolchain

OpenOCD

Windows
Build

Tools (1)

Java JRE

1. Windows build tools required on Windows platforms only.

Efinity
Software

Create Hardware
(RTL) DesignCreate Software Code (C/C++)

Software

Create your RTL
design in the Efinity
software and then
program it into the
FPGA.

Write your C/C++
code using the
Eclipse IDE and
then copy it to the
flash memory.

Learn more: Refer to the Sapphire RISC-V SoC Data Sheet for detailed specifications on the SoC.

VexRiscv RISC-V Core
The Sapphire SoC is based on the VexRiscv core created by Charles Papon. The
VexRiscv core is a 32-bit CPU using the ISA RISCV32I with M, A, F, D, and C
extensions, has six pipeline stages (fetch, injector, decode, execute, memory, and
writeback), and a configurable feature set.

In the Sapphire SoC, the VexRiscv core is user configurable, and can support AXI4
and APB3 bus interfaces and instruction and data caches.

The VexRiscv core won first place in the RISC-V SoftCPU contest in 2018.(1)

(1) https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-
Cutting-Edge-RISC-V

www.elitestek.com v

Sapphire RISC-V SoC Hardware and Software User Guide

Required Software
To write software for the Sapphire SoC, you need the following tools. The SDK is
available as a single download in the Support Center for Windows and Ubuntu
operating systems.

Efinity® Software

易灵思® development environment for creating RTL designs targeting Trion® or
钛金系列 FPGAs. The software provides a complete RTL-to-bitstream flow, simple,
easy to use GUI interface, and command-line scripting support.
Version: 2021.1 or higher

RISC-V SDK

Eclipse MCU—Open-source Java-based development environment that uses
plug-ins to extend and customize its functionality. The GNU MCU Eclipse plug-in
lets you develop applications for ARM and RISC-V cores.
Version: 2020-09 (4.17.0)
Disk space required: 433 MB (Windows), 433 MB (Linux)

xPack GNU RISC-V Embedded GCC—Open-source, prebuilt toolchain from the
xPack Project.
Version: 8.3.0-2.3
Disk space required: 1.53 GB (Windows), 1.5 GB (Linux)

OpenOCD Debugger—The open-source Open On-Chip Debugger (OpenOCD)
software includes configuration files for many debug adapters, chips, and boards.
Many versions of OpenOCD are available. The RISC-V flow requires a custom
version of OpenOCD that includes the VexRiscv 32-bit RISC-V processor.
Version: 20200421
Disk space required: 9.4 MB (Windows), 7.4 MB (Linux)

GNU MCU Eclipse Windows Build Tool (Windows Only)—This open-source
Windows-specific package helps to manage build projects and includes GNU
make.
Version: 4.2.1-2-win32-x64
Disk space required: 4.99 MB

Java JRE

Open-source Java 64-bit runtime environment; required for Eclipse.
Version: 8 Update 241
https://www.java.com/en/download/manual.jsp (Java 8 official release)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
http://jdk.java.net/16/ (OpenJDK 16)

www.elitestek.com vi

Sapphire RISC-V SoC Hardware and Software User Guide

Required Hardware
● Trion® T120 BGA324 Development Board or

钛金系列 Ti60 F225 Development Board
● 5 or 12 V power cable
● Micro-USB cable
● Computer or laptop
● (Optional) USB to UART converter module for the

Trion® T120 BGA324 Development Board(2)

● (Optional) FTDI chip cable, C232HM-DDHSL-0, if you want to use the
OpenOCD debugger and Efinity® Debugger simultaneously

Note: Some of the software examples provided with the SoC use a UART terminal to display messages. See
Set Up a USB-to-UART Module (Trion) on page 55 and Using the On-board UART () on page 55 for
more information.

(2) The 钛金系列 Ti60 F225 Development Board had an on-board USB-to-UART converter and does not require a separate module.

www.elitestek.com vii

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 1

Install Software and SoC
Contents:

● Install the Efinity Software
● Install the RISC-V SDK
● Install the Java JRE

Install the Efinity® Software
If you have not already done so, download the Efinity® software from the Support
Center and install it. For installation instructions, refer to the Efinity Software
Installation User Guide.

Warning: Do not use spaces or non-English characters in the Efinity path.

Install the RISC-V SDK
To install the SDK:

1. Download the file riscv_sdk_windows-v<version>.zip or riscv_sdk_ubuntu-
v<version>.zip from the Support Center.

2. Create a directory for the SDK, such as c:\riscv-sdk (Windows) or home/
my_name/riscv-sdk (Linux).

3. Unzip the file into the directory you created. The complete SDK is distributed
as compressed files. You do not need to run an installer.

Windows directory structure:

● SDK_Windows
— eclipse—Eclipse application.
— GNU MCU Eclipse—Windows build tools.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-2.3_windows—GCC compiler.
— run_eclipse.bat—Batch file that sets variables and launches Eclipse.
— setup.bat—Batch file to set variables for running OpenOCD on the

command line to flash the binary.

Ubuntu directory structure:

● SDK_Ubuntu<version>
— eclipse—Eclipse application.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-2.3_linux—GCC compiler.
— run_eclipse.sh—Shell file that sets variables and launches Eclipse.
— setup.sh—Shell file to set variables for running OpenOCD on the command

line to flash the binary.

www.elitestek.com 8

Sapphire RISC-V SoC Hardware and Software User Guide

Install the Java JRE
To install the JRE:

1. Download the 64-bit version of the JRE or JDK for your operating system from
https://www.java.com/en/download/manual.jsp (Java 8 official release)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
http://jdk.java.net/16/ (OpenJDK 16)

2. Follow the installation instructions on the web site to install the JRE.

Note: You need a 64-bit version of the Java JRE. If you use a 32-bit version, when you try to launch Eclipse
you will get an error that Java quit with exit code 13.

www.elitestek.com 9

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 2

IP Manager
Contents:

● Customizing the Sapphire SoC
● Modify the Bootloader

The Efinity® IP Manager is an interactive wizard that helps you customize and
generate 易灵思® IP cores. The IP Manager performs validation checks on the
parameters you set to ensure that your selections are valid. When you generate
the IP core, you can optionally generate an example design targeting an 易灵思
development board and/or a testbench. This wizard is helpful in situations in
which you use several IP cores, multiple instances of an IP core with different
parameters, or the same IP core for different projects.

The IP Manager consists of:
● IP Catalog—Provides a catalog of IP cores you can select. Open the IP Catalog

using the toolbar button or using Tools > Open IP Catalog.
● IP Configuration—Wizard to customize IP core parameters, select IP core

deliverables, review the IP core settings, and generate the custom variation.
● IP Editor—Helps you manage IP, add IP, and import IP into your project.

Generating Sapphire SoC with the IP Manager

The following steps explain how to customize an IP core with the IP Configuration
wizard.

1. Open the IP Catalog.
2. Choose an IP core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed
information on the options, refer to the IP core's user guide or on-line help.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core
example design targeting an 易灵思® development board and/or testbench.
For SoCs, you can also optionally generate embedded software example code.
These options are turned on by default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The

Console in the Summary tab shows the generation status.

Note: You can disable the Review configuration generation dialog box by turning off
the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog
box. Click OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project
pane.

Generated RTL Files

The IP Manager generates these files and directories:
● <module name>_define.vh—Contains the customized parameters.
● <module name>_tmpl.v—Verilog HDL instantiation template.
● <module name>_tmpl.vhd—VHDL instantiation template.

www.elitestek.com 10

Sapphire RISC-V SoC Hardware and Software User Guide

● <module name>.v—IP source code.
● settings.json—Configuration file.
● <kit name>_devkit—Has generated RTL, example design, and Efinity® project

targeting a specific development board.
● Testbench—Contains generated RTL and testbench files.

Note: Refer to the IP Manager chapter of the Efinity Software User Guide for more information about the
Efinity IP Manager.

Generated Software Code

If you choose to output embedded software, the IP Manager saves it into the
<project>/embedded_sw/<SoC module> directory.
● bsp—Board specific package.
● config—Has the Eclipse project settings file and OpenOCD debug

configuration settings files for Windows.
● config_linux—Has the Eclipse project settings file and OpenOCD debug

configuration settings files for Linux.
● software—Software examples.
● tool—Helper scripts.
● cpu0.yaml—CPU file for debugging.

Instantiating the SoC

The IP Manager creates these template files in the <project>/ip/<module name>
directory:
● <module name>.v_tmpl.v is the Verilog HDL module.
● <module name>.v_tmpl.vhd is the VHDL component declaration and

instantiation template.

To use the IP, copy and paste the code from the template file into your design and
update the signal names to instantiate the IP.

Important: When you generate the IP, the software automatically adds the module file (<module name>.v)
to your project and lists it in the IP folder in the Project pane. Do not add the <module name>.v file
manually (for example, by adding it using the Project Editor); otherwise the Efinity® software will issue errors
during compilation.

IP Manager adds generated
IP to the IP folder (and

your project) automatically

Do not manually add
IP to the Design folder

www.elitestek.com 11

Sapphire RISC-V SoC Hardware and Software User Guide

Customizing the Sapphire SoC
You customize the Sapphire SoC using the IP Configuration wizard. The
parameters are arranged on tabs so you can click through them more easily.

Table 1: Sapphire SoC Tab Parameters

Parameter Options Description

Core Number 1 - 4 Enter the number of CPU cores.
Default: 1

Frequency (MHz) 20 - 400 Enter the frequency in MHz.
Default: 100

Peripheral Clock On, off Choose whether you want to run a dedicated clock for the APB3
slaves (SPI, I2C, GPIO, UART, and user timer) and AXI4 slave.

Peripheral Clock
Frequency (MHz)

20 - 200 Enter the peripheral clock frequency in MHz.

Cache On, off Choose whether you want to include I$ and D$ caches.

Custom Instruction On, off Choose whether to enable the custom instruction interface.

Linux Memory
Management Unit

On, off Choose whether to enable the Linux MMU.

Floating-point Unit On, off Choose whether to enable the FPU.

Atomic Extension On, off Choose whether to enable atomic extension instruction support.
If you enable the Linux MMU, this option must be enabled and is
turned on by default.

Compressed
Extension

On, off For cacheless configurations only, choose whether to enable
compressed instruction support.

Important: When running the SoC at high frequencies, 易灵思 recommends that you use the TIMING_1 place
and route optimization. To set this option:
1. Open the Project Editor.
2. Click the Place and Route tab.
3. Double-click the Value cell for --optimization_level.
4. Choose TIMING_1.
5. Click OK and then compile.

Table 2: Sapphire Cache/Memory Tab Parameters

Parameter Options Description

Data Cache Way 1, 2, 4, 8 Choose the number of ways for the data cache.
Default: 1

Cache Size 1 KB, 2 KB, 4 KB,
8 KB, 16 KB, 32 KB

Choose the size of the data cache.
Default: 4 KB

Instruction Cache
Way

1, 2, 4, 8 Choose the number of ways for the instruction cache.
Default: 1

Cache Size 1 KB, 2 KB, 4 KB,
8 KB, 16 KB, 32 KB

Choose the size of the instruction cache.
Default: 4 KB

External Memory
Interface

On, off On: Instantiate the external memory interface.
Off: Do not use the external memory interface.

AXI Interface Type On, off On: Use an AXI4 full duplex interface.
Off: Use an AXI3 half duplex interface.

External Memory
Data Width

32, 64, 128, 256, 512 Choose the data width for the AXI3 interface.
Default: 128

www.elitestek.com 12

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Options Description

External Memory
AXI3 Address Size

4 MB, 8 MB, 16
MB, 32 MB, 64 MB,
128 MB, 256 MB,

 0.5 GB, 1 GB,
1.5 GB, 2 GB, 2.5
GB, 3 GB, 3.5 GB

Choose the address size for the AXI3 interface.
Default: 3.5 GB

On-Chip RAM Size 1 KB, 2 KB, 4 KB, 8
KB, 16 KB, 24 KB,

32 KB, 48 KB, 64 KB,
80 KB, 96 KB,

128 KB, 144 KB,
160 KB, 192 KB,
224 KB, 256 KB,
384 KB, 512 KB

Choose the size of the internal BRAM.
Default: 4 KB

Custom On-Chip
RAM Application

On, off On: Overwrite the default SPI flash bootloader with the user
application.
Off: Use the default SPI flash bootloader.

User Application Path – Enter the path to your target user application. The file must be in
.hex format.

Table 3: Sapphire Debug Tab Parameters

Parameter Options Description

Soft Debug
Tap

On, off Choose whether you want to include a soft
debug TAP for debugging.
Off: Default. The SoC uses the JTAG User
TAP interface block to communicate with the
OpenOCD debugger.
On: The SoC has a soft JTAG interface to
communicate with the OpenOCD debugger. You
need to use this setting if you want to use the
soft JTAG interface instead of the JTAG User TAP.

FPGA Tap Port 1, 2, 3, 4 Choose which Tap port you want to target with
the OpenOCD debugger. This option is only
applicable when you are using the JTAG User
Tap interface block to communicate with the
OpenOCD debugger.

Target Board Trion T120 BGA324 Development Board
Trion T120 BGA576 Development Board
Trion T20 BGA256 Development Board

Xyloni
Titanium Ti60 F225 Development Board

Titanium Ti180 M484 Develipment Board
Custom

Chose which board you want to target with
OpenOCD.
Choose Custom to target your own board.

Custom Target
Board

– Enter the name of your board.

Application
Region Size

124KB, 252KB, 508KB, 1MB, 2MB, 4MB,
8MB, 16MB, 32MB, 64MB, 128MB, 256MB

Modify the linker script to outline the region
for the user application. This option is only
applicable for SoCs with external memory. For
SoCs with internal memory, the region size is
determined by the on-chip RAM size.

Application
Stack Size

1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB,
128KB, 256KB, 512KB, 1MB, 2MB, 4MB,

8MB, 16MB, 32MB, 64MB, 128MB

Modify the linker script to specify the
application stack size. This option is only
applicable for SoCs with external memory. For
SoCs with internal memory, the region size is
automatically set to 1/8 of the on-chip RAM size.

OpenOCD
Debug Mode

Turn on by default
Turn off by default

Choose whether you want software applications
to run in debug mode by default or not. See
Debug with the OpenOCD Debugger on page
28 for more details.

www.elitestek.com 13

Sapphire RISC-V SoC Hardware and Software User Guide

Table 4: Sapphire UART Tab Parameters
Where n is 0, 1, or 2

Parameter Options Description

UART n On, off On: Instantiate the interface.
Off: Do not use the interface.

UART n Interrupt ID 1 - 36 Choose the interrupt ID for the UART. The IDs default to:
UART 0: 1
UART 1: 2
UART 2: 3

Table 5: Sapphire SPI Tab Parameters
Where n is 0, 1, or 2.

Parameter Options Description

SPI n On, off On: Instantiate the interface.
Off: Do not use the interface.

SPI n Interrupt ID 1 - 36 Choose the interrupt ID for the SPI. The IDs default to:
SPI 0: 4
SPI 1: 5
SPI 2: 6

Table 6: Sapphire I2C Tab Parameters
Where n is 0, 1, or 2.

Parameter Options Description

I2C n On, off On: Instantiate the interface.
Off: Do not use the interface.

I2C n Interrupt ID 1 - 36 Choose the interrupt ID for the I2C. The IDs default to:
I2C 0: 8
I2C 1: 9
I2C 2: 10

Table 7: Sapphire GPIO Tab Parameters
Where n is 0 or 1.

Parameter Options Description

GPIO n On, off On: Instantiate the interface.
Off: Do not use the interface.

GPIO n Bit Width 1, 2, 4, 8, 16 Choose the number of pins for the GPIO.
Default: 4 (GPIO 0), 8 (GPIO 1)

GPIO n Interrupt ID 0 1 - 36 Choose the interrupt ID for the GPIO. The IDs default to:
GPIO 0: 12
GPIO 1: 14

GPIO n Interrupt ID 1 1 - 36 Choose the interrupt ID for the GPIO. The IDs default to:
GPIO 0: 13
GPIO 1: 15

Table 8: Sapphire APB3 Tab Parameters
Where n is 0, 1, 2, 3, or 4.

Parameter Options Description

APB Slave Address
Size

4 KB - 1 MB Choose the APB slave size. This setting applies to all APB slaves.
Default: 64KB

www.elitestek.com 14

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Options Description

APB3 Slave n On, off On: Instantiate the interface.
Off: Do not use the interface.

Table 9: Sapphire AXI4 Tab Parameters
Where n is 0 or 1.

Parameter Options Description

AXI Slave On, off On: Instantiate the interface.
Off: Do not use the interface.

AXI Slave Size 1 KB, 2 KB, 4 KB, 8
KB, 16 KB, 32 KB, 64
KB, 128 KB, 256 KB,
512 KB, 1 MB, 2 MB,
4 MB, 8 MB, 16 MB,

32 MB, 64 MB,
128 MB, 256 MB

Choose the size of the AXI slave.

AXI Master n On, off On: Instantiate the interface.
Off: Do not use the interface.

AXI Master n Data
Width

32, 64, 128, 256, 512 Choose the width of the AXI master.
Do not specify an AXI master width that is larger than the external
memory data width.

Table 10: Sapphire User Interrupt Tab Parameters
Where n is A, B, C, D, E, F, G, or H.

Parameter Options Description

User n Interrupt On, off On: Instantiate the interface.
Off: Do not use the interface.

User n Interrupt ID 1 - 36 Choose the interrupt ID. The defaults are:
User A Interrupt: 16
User B Interrupt: 17
User C Interrupt: 22
User D Interrupt: 23
User E Interrupt: 24
User F Interrupt: 25
User G Interrupt: 26
User H Interrupt: 27

Table 11: Sapphire User Timer Tab Parameters
Where n is 0, 1, or 2.

Parameter Options Description

User Timer n On, off On: Instantiate the interface.
Off: Do not use the interface.

User Timer n Counter
Width

12, 16, 32 Choose the counter bit width.
Default: 12

User Timer n
Prescaler Width

8, 16 Choose the prescaler bit width.
Default: 8

User Timer n
Interrupt ID

1 - 36 Choose the interrupt ID. The defaults are:
User Timer 0: 19
User Timer 1: 20
User Timer 2: 21

www.elitestek.com 15

Sapphire RISC-V SoC Hardware and Software User Guide

Table 12: Sapphire Base Address Tab Parameters

Parameter Options Description

Address Assignment
Method

AUTO, MANUAL AUTO: Automatically assign an address to the enabled
peripherals.
MANUAL: The user can assign addresses to the enabled
peripherals.

External Memory Base
Address

– Displays the base address. You cannot change it.

AXI Slave Base Address –

Peripheral and IO Base
Address

–

Displays the base address when the Address Assignment
Method is set to AUTO.
When the Address Assignment Method is Manual, enter the
base address value. The wizard automatically rounds the value
to 16 MB aligned addresses during IP generation. For example,
0x41234567 is rounded to 0x41000000.

UARTn Address Offset –

SPIn Address Offset –

I2Cn Address Offset –

GPIOn Address Offset –

User Timern Address
Offset

–

Displays the base address when the Address Assignment
Method is set to AUTO.
When the Address Assignment Method is Manual, enter base
address value. The wizard automatically rounds the value to 4 KB
aligned addresses during IP generation. For example, 0x4123 is
rounded to 0x41000.

APB3n Address Offset – Displays the base address when the Address Assignment
Method is set to AUTO.
When the Address Assignment Method is Manual, enter base
address value. The wizard automatically rounds the value to APB
sized aligned addresses during IP generation. For example, if the
APB size is 64 KB, 0x23456 is rounded to 0x20000.

On-Chip RAM Base
Address

– Displays the base address. You cannot change it.

www.elitestek.com 16

Sapphire RISC-V SoC Hardware and Software User Guide

Modify the Bootloader
When you generate the Sapphire SoC, the IP Manager creates a pre-built
bootloader .bin to target the on-chip RAM size you selected. If you assigned
the peripheral addresses manually, you need to create a custom bootloader
according to the following instructions.

Note: You need the embedded software example code to make these changes; if you have not already done
so, generate it.

Modify the Bootloader Software to Extend the External Memory Size

First you need to modify the bootloader code:

1. Open the bootloaderConfig.h file in the embedded_sw/<SoC module>/bsp/
efinix/EfxSapphireSoc/app directory.

2. Change the #define USER_SOFTWARE_SIZE parameter for the new on-chip
RAM size and save.

3. In Eclipse, create a new project from the makefile in the embedded_sw/<SoC
module>/software/standalone/bootloader directory and compile it to
generate the new bootloader.hex file.

Second, you update and re-generate the SoC in the IP Manager to point to
your new bootloader.hex and change the application region size. The default
maximum size is 124 KB.

1. In the Sapphire IP wizard, go to the Cache/Memory tab.
2. Turn on the Custom On-Chip RAM Application option.
3. Click the Browse button for the to select the new bootloader.hex you created

in the previous set of steps.
4. Generate the SoC.

Modify the Bootloader Software without External Memory Enabled

First, you need to modify the bootloader linker script:

1. Open the bootloader.ld file in the embedded_sw/<SoC module>/bsp/efinix/
EfxSapphireSoc/linker directory.

2. Replace the MEMORY and PHDRS code with the following code. The
<bootloader_address> should be 0xF9000000 + (<memory size>-1024),
where <memory size> is your SoC's on-chip RAM size.

MEMORY
{
 start (wxai!r) : ORIGIN = 0xF9000000, LENGTH = 512
 ram (wxai!r) : ORIGIN = <bootloader_address>, LENGTH = 1024
}

PHDRS
{
 start PT_LOAD;
 ram PT_LOAD;
}

Second you need to modify the bootloader code:

1. Open the bootloaderConfig file in the embedded_sw/<SoC module>/bsp/
efinix/EfxSapphireSoc/app directory.

2. Change the #define USER_SOFTWARE_SIZE parameter for the new on-chip
RAM size and save.

Third, in Eclipse, create a new project from the makefile in the
embedded_sw/<SoC module>/software/standalone/bootloader directory and
compile it.

www.elitestek.com 17

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 3

Program the Board with the Sapphire RTL
Design

Contents:

● About the Example Design
● Enable the On-Board 10 MHz Oscillator (T120 BGA324 Board)
● Enable the LPDDR4x Memory (Ti180 M484 Board)
● Installing USB Drivers
● Program the Development Board

Before working with software code, recommends that you program your board
with an RTL design that instantiates the Sapphire SoC. When you generate the
Sapphire SoC with the IP Manager, you can optionally generate an example
Efinity® project and bitstream file to get you started quickly.

About the Example Design
This example targets Trion and development boards:

● Trion® T120 BGA324 Development Board—The RTL design files are in the
T120F324_devkit directory.

● 钛金系列 Ti60 F225 Development Board—The RTL design files are in the
Ti60F225_devkit directory.

● 钛金系列 Ti180 M484 Development Board—The RTL design files are in the
Ti180M484_devkit directory.

When you generate the IP core, the IP Manager creates the example design (PLL
settings, SDC timing constraints, and I/O assignments) using the settings you
chose in the wizard, with a few exceptions:
● For the Trion board, the example design only supports external memory

widths of 128 and 256 bits because the DDR controller only supports these
widths. Therefore, do not choose 32 or 64 bits for the external memory.

● The example design automatically connects UART0, SPI0, I2C0, GPIO0, the soft
TAP pins, and the PLL source clock pins to top-level ports, and it assigns I/O
pins to them (if they are enabled). If you add more of these peripherals, you
need to connect them manually and create the I/O assignments for them.

● The example design uses PLL settings that look for the best effort multiplier
and divider values.

Note: The following description is for the example design using the default settings.

This example writes to and reads from the development board's memory module
using the AXI interface:

● For the Trion® T120 BGA324 Development Board, the design uses the board's
LPDDR3 DRAM module.

● For the 钛金系列 Ti60 F225 Development Board, the design uses the board's
HyperRAM module.

● For the 钛金系列 Ti180 M484 Development Board, the design uses the board's
LPDDR4 DRAM module.

The Sapphire SoC is configured for:
● 100 MHz frequency

www.elitestek.com 18

Sapphire RISC-V SoC Hardware and Software User Guide

● External memory interface is enabled with a width of 128 and size of 3.5 GB
● Caches are enabled with a size of 4 KB
● 4KB on-chip RAM size
● Soft Debug Tap is disabled
● UART 0 is enabled
● SPI 0 is enabled
● I2C 0 is enabled
● GPIO 0 is enabled
● APB3 0 is enabled
● AXI4 Slave is enabled
● AXI Master 0 is enabled
● User interrupt A is enabled

Figure 2: Example Design Block Diagram

Memory
Checker

Timer

AXI4
Master

APB3
Slave

Debug

RISC-V
CPU

AXI3/
AXI4

Memory
Controller

Memory
Module

FPGA

RISC-V SoC

JTAG

PLL
GPIO

UART

memoryCheckerPass

FTDI JTAG TAP

pll_refclk LED

UART

SPI Flash

I2C
PMOD or

P3 Header

AXI4
Slave

Table 13: Example Design Implementation

FPGA Logic +
Adders

Flipflops Multipliers
or DSP
Blocks

Memory
Blocks

fMAX (MHz) Language Efinity
Version

T120
BGA324 C4

8,241 8,538 4 69 112 Verilog HDL 2022.1.226

Ti60 F225 C4 10,420 9,536 4 81 163 Verilog HDL 2022.1.226

Ti180
M484 C4

11,548 15,330 4 101 240 Verilog HDL 2022.1.226

Enable the On-Board 10 MHz Oscillator (T120
BGA324 Board)
For the Trion® T120 BGA324 Development Board, the SoC design uses the on-
board 10 MHz oscillator. To enable it, add a jumper to connect pins 2 and 3 on
header J10.

Figure 3: Connect Pins 2 and 3 on J10

J10
Jumper

10 MHz Oscillator

SMA Connector

GPIOR_188_PLLIN2

www.elitestek.com 19

Sapphire RISC-V SoC Hardware and Software User Guide

Enable the LPDDR4x Memory (Ti180 M484
Board)
For the 钛金系列 Ti180 M484 Development Board, the SoC design uses LPDDR4x
settings to drive the external mamory. To enable it, change the jumpers on PT12
and PT15 to connect pins 1 and 2 to provide 0.6 V to VDDQ and VDDQ_PHY.

Figure 4: Connect Pins 1 and 2 on PT12 and PT15

Jumper

PT15
VDDO

2
3
4

VDDO_PHY

2
3
4

PT12

11

Installing USB Drivers
To program Trion® FPGAs using the Efinity® software and programming cables,
you need to install drivers.

易灵思 development boards have FTDI chips (FT232H, FT2232H, or FT4232H) to
communicate with the USB port and other interfaces such as SPI, JTAG, or UART.

Installing Drivers on Windows

On Windows, you use software from Zadig to install drivers. Download the Zadig
software (version 2.7 or later) from zadig.akeo.ie. (You do not need to install it;
simply run the downloaded executable.)

Install the driver for the interfaces listed in the following table.

Board Interface to Install Driver

Trion® T120 BGA324 Development Board Install drivers for all interfaces (0 and 1).

钛金系列 Ti60 F225 Development Board Install drivers for interfaces 0 and 1 only. Windows
automatically installs a driver for interfaces 2 and 3
when you connect the board to your computer.

钛金系列 Ti180 M484 Development Board Install driver for interface 1 only.

To install the driver:

1. Connect the board to your computer with the appropriate cable and power it
up.

2. Run the Zadig software.

Note: To ensure that the USB driver is persistent across user sessions, run the Zadig
software as administrator.

3. Choose Options > List All Devices.
4. Repeat the following steps for each interface. The interface names end with

(Interface N), where N is the channel number.
● Select libusb-win32 in the Driver drop-down list.
● Click Replace Driver.

5. Close the Zadig software.

Note: This section describes the instruction to install the libusb-win32 driver for each interface separately. If
you have previously installed a composite driver or installed using libusbK drivers, you do not need to update
or reinstall the driver. They should continue to work correctly.

www.elitestek.com 20

Sapphire RISC-V SoC Hardware and Software User Guide

Installing Drivers on Linux

The following instructions explain how to install a USB driver for Linux operating
systems.

1. Disconnect your board from your computer.
2. In a terminal, use these commands:

> sudo <installation directory>/bin/install_usb_driver.sh
> sudo udevadm control --reload-rules

Note: If your board was connected to your computer before you executed these commands,
you need to disconnect and re-connect it.

Program the Development Board
When you generate the Sapphire SoC in the IP Manager, you can optionally
generate an example design targeting an 易灵思 development board. Example
designs include a bitstream file, soc.hex, so you can get started quickly without
having to compile the design.

Table 14: Available Example Designs

Board Location

钛金系列 Ti60 F225 Development Board Ti60F225_devkit

钛金系列 Ti180 M484 Development Board Ti180M484_devkit(3)

Trion® T120 BGA324 Development Board T120F324_devkit

Download the .hex file to the board using these steps:

Connect the board to your computer using a USB cable.

Learn more: Instructions on how to use the Efinity software and board documentation are available in the
Support Center.

(3) The Efinity software v2022.1.226 does not support bitstream generation for the Ti180 M484 package. Therefore, the example
does not include a .hex file. Check the Efinity release notes for the latest bitstream support.

www.elitestek.com 21

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 4

Simulate

The IP Manager automatically generates a testbench and top-level file for
simulation based on the settings you made in the wizard, including the top-level
file generation, I/O connection to the testbench, simulation models, and stimulus
such as clock and reset. The testbench bypasses the SPI flash data retrieval step
to speed up simulation.

Note: If you manually assign addresses to the peripherals, the default simulation may not function correctly.

1. Open a terminal.
2. Change to the Testbench directory for your SoC.
3. Set up the Efinity environment:

● Linux: source /<path to Efinity>/bin/setup.sh
● Windows: c:\<path to Efinity>\bin\setup.bat

4. Run the simulation using the default application with the command Python3
run.py.

Note: If you want to include the SPI flash retrieval step, run the simulation with the
command:

Python3 run.py -f

A successful simulation returns the following messages

0 ---
0 [EFX_INFO]: Start executing helloWorld TEST
0 ---
51315 ---
51315 [EFX_INFO]: Receiving uart data from soc
51315 ---
2121065 ---
2121065 [EFX_INFO]: TEST PASSED
2121065 [EFX_INFO]: Hello World from Efinix!
2121065 ---

To simulate with a different application instead of the default, use the command:

Python3 run.py -b <path to application>/app.bin

When you use a non-default application, the testbench bypasses the default
driver and monitor sequences and displays warning messages.

0 ---
0 [EFX_INFO]: Executing custom binary file...
0 [EFX_WARN]: Skipped testbench default driver and monitor sequences.
0 [EFX_INFO]: Running simulation...

0 ---

You need to develop your own sequence for your application.

www.elitestek.com 22

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 5

Launch Eclipse
Contents:

● Set Global Environment Variables

The RISC-V SDK includes the run_eclipse.bat file (Windows) or run_eclipse.sh file
(Linux) that adds executables to your path, sets up envonment variables for the
Sapphire BSP, and launches Eclipse. Always use this executable to launch Eclipse;
do not launch Eclipse directly.

When you first start working with the Sapphire SoC, you need to configure
your Eclipse workspace and environment. Setting up a global development
environment for your workspace means you can store all of your Sapphire
software code in the same place and you can set global environment variables
that apply to all software projects in your workspace.

You should use a unique workspace for your Sapphire SoC projects. recommends
using the embedded_sw/<SoC module> directory as the workspace directory.

Note: With IP Manager, you can generate multiple SoCs with different options. Using the
embedded_sw/<SoC module> directory as your workspace means that you can explore more than one SoC
by simply switching workspaces.

Follow these steps to launch Eclipse and set up your workspace:

1. Launch Eclipse using the run_eclipse.bat file (Windows) or run_eclipse.sh file.
2. If this is the first time you are running Eclipse, create a new workspace that

points to the embedded_sw/<SoC module> directory. Otherwise, choose File
> Switch Workspace > Other to choose an existing workspace directory and
click Launch.

Set Global Environment Variables
OpenOCD uses two environment variables, DEBUG and DEBUG_OG. It is simplest to
set them as global environment variables for all projects in your workspace. Then,
you can adjust them as needed for individual projects.

Note: When you configure the SoC in the IP Manager, you can choose whether to turn on debug mode
by default or not. When you generate the SoC, the setting is saved in the /embedded_sw/bsp/efinix/
EfxSapphireSoc/include/soc.mk file. If you want to change the debug mode, you can change the setting in
the IP Configuration wizard and re-generate the SoC, or use the following instructions to add the variables to
your project and change them there.

Choose Window > Preferences to open the Preferences window and perform
the following steps.

www.elitestek.com 23

Sapphire RISC-V SoC Hardware and Software User Guide

1. In the left navigation menu, expand C/C++ > Build.
2. Click C/C++ > Build > Environment.
3. Click Add and add the following environment variables:

Variable Value Description

DEBUG no Enables or disables debug mode.
no: Debugging is turned off
yes: Debugging is enabled

DEBUG_OG no Enables or disables optimization during debugging.
Use an uppercase letter O not a zero.

4. Click Apply and Close.

www.elitestek.com 24

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 6

Create and Build a Software Project
Contents:

● Create a New Project
● Import Project Settings (Optional)
● Enable Debugging
● Build

After you set up your Eclipse workspace, you are ready to create a new project
and build it. These instructions walk you through the process using the axiDemo
example project from the software directory.

Create a New Project
In this step you create a new project from the axiDemo code example.

1. Launch Eclipse.
2. Select the Sapphire workspace if it is not open by default.
3. Make sure you are in the C/C++ perspective.
Import the axiDemo example:
4. Choose File > New > Makefile Project with Existing Code.
5. Click Browse next to Existing Code Location.
6. Browse to the software/standalone/axiDemo directory and click Select

Folder.
7. Select <none> in the Toolchain for Indexer Settings box.
8. Click Finish.

The axiDemo project folder displays in the Project Explorer. The folder has the
makefile and main.c source code as well as launch scripts for the OpenOCD
Debugger.

Import Project Settings (Optional)
provides a C/C++ project settings file that defines the include paths and symbols
for the C code. Importing these settings into your project lets you explore and
jump through the code easily.

Note: You are not required to import the project settings to build. These settings simply make it easier for
you to write and debug code.

To import the settings:

1. Choose File > Import to open the Import wizard.
2. Expand C/C++.
3. Choose C/C++ > C/C++ Project Settings.
4. Click Next.
5. Click Browse next to the Settings file box.
6. Browse to one of the following files and click Open:

www.elitestek.com 25

Sapphire RISC-V SoC Hardware and Software User Guide

Option Description

Windows embedded_sw\<SoC module>\config\project_settings_soc.xml

Linux embedded_sw/<SoC module>/config_linux/project_settings_soc.xml

7. In the Select Project box, select the project name(s) for which you want to
import the settings.

8. Click Finish.

Eclipse creates a new folder in your project named Includes, which contains all of
the files the project uses.

After you import the settings, clean your project (Project > Clean) and then build
(Project > Build Project). The build process indexes all of the files so they are
linked in your project.

Enable Debugging
If you chose OpenOCD Debug Mode > Turn On by default when you
configured the SoC, debugging is turned on and you can skip the instructions in
this topic.

If you chose OpenOCD Debug Mode > Turn Off by default when you
configured the SoC, debugging is turned off. Add the environment variables as
described in Set Global Environment Variables on page 23 and then change the
variables as needed.

● To run the program for normal operation, keep DEBUG set to no.
● To debug with the OpenOCD debugger, set DEBUG to yes.

In debug mode, the program suspends operation after loading so that you can
set breakpoints or perform debug tasks.

To change the debug settings for your project, right-click the project name
axiDemo in the Project Explorer and choose Properties from the pop-up menu.

1. Expand C/C++ Build.
2. Click C/C++ Build > Environment.
3. Click the Debug variable.
4. Click Edit.
5. Change the Value to yes.
6. Click OK.
7. Click Apply and Close.

Important: When you change the debug value for a project you previously built, you must clean the project
(Project > Clean) before building again. Otherwise, Eclipse gives a message in the Console that there is
Nothing to be done for 'all'

Build
Choose Project > Build Project or click the Build Project toolbar button.

The makefile builds the project and generates these files in the build directory:
● axiDemo.asm—Assembly language file for the firmware.
● axiDemo.bin—Download this file to the flash device on your board using

OpenOCD. When you turn the board on, the SoC loads the application into the
RISC-V processor and executes it.

● axiDemo.elf—Use this file when debugging with the OpenOCD debugger.
● axiDemo.hex—Hex file for the firmware. (Do not use it to program the FPGA.)

www.elitestek.com 26

Sapphire RISC-V SoC Hardware and Software User Guide

● axiDemo.map—Contains the SoC address map.

www.elitestek.com 27

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 7

Debug with the OpenOCD Debugger
Contents:

● Launch the Debug Script
● Debug
● Debug - Multiple Cores

With the development board programmed and the software built, you are ready
to configure the OpenOCD debugger and perform debugging. These instructions
use the axiDemo example to explain the steps required.

Launch the Debug Script
With the Efinity software v2022.1 and higher, debugging scripts are available for
each software example in the /embedded_sw/<module>/software/standalone/
directory and are imported into your project when you create a new project from
an existing makefile. You can use these scripts to launch debug mode.

Table 15: Debug Configurations

Launch Script Description

axiDemo_trion.launch Debugging software on Trion® development boards.

axiDemo_ti.launch Debugging software on 钛金系列 development boards

axiDemo_softTap.launch Debugging software on Trion or 钛金系列 development boards
with the soft JTAG TAP interface. For example, you would need to
use the soft TAP if you want to use the OpenOCD debugger and
the Efinity® Debugger at the same time. (See Using a Soft JTAG
Core for Example Designs on page 58.)

To debug the axiDemo project:

1. Right-click axiDemo > axiDemo_<family>.launch.
2. Choose Debug As > > axiDemo_<family>. Eclipse launches the OpenOCD

debugger for the project.
3. Click Debug.

Debug
After you click Debug in the Debug Configuration window, the OpenOCD server
starts, connects to the target, starts the gdb client, downloads the application,
and starts the debugging session. Messages and a list of VexRiscv registers
display in the Console. The main.c file opens so you can debug each step.

1. Click the Resume button or press F8 to resume code operation. All of the LEDs
on the board blink continuously in unison.

2. Click Step Over (F6) to do a single step over one source instruction.
3. Click Step Into (F5) to do a single step into the next function called.
4. Click Step Return (F7) to do a single step out of the current function.
5. Double-click in the bar to the left of the source code to set a breakpoint.

Double-click a breakpoint to remove it.
6. Click the Registers tab to inspect the processor's registers.

www.elitestek.com 28

Sapphire RISC-V SoC Hardware and Software User Guide

7. Click the Memory tab to inspect the memory contents.
8. Click the Suspend button to stop the code operation.
9. When you finish debugging, click Terminate to disconnect the OpenOCD

debugger.

Figure 5: Perform Debugging

Learn more: For more information on debugging with Eclipse, refer to Running and debugging projects in
the Eclipse documentation.

Debug - Multiple Cores
By default, the OpenOCD debugger always targets the first core, core 0, when
debugging. If your SoC has multiple cores, you can do standalone debugging
with a core other than core 0. This debug method uses the openocdServer debug
launch scripts, which are available in the software/standalone/openocdServer
directory. The general procedure is:

1. Create an SoC with more than 1 core.
2. Create a new project in Eclipse for your software code.
3. Create a new project for the openocdServer files.
4. Start the OpenOCD server.

a. Right-click openocdServer > openocdServer_<family>.launch.
b. Choose Debug As > > openocdServer_<family>.

5. Modify the debug configuration for your application to use the OpenOCD
server:

a. Right-click <project folder> > Debug As > Debug Configurations.
b. Choose GDB OpenOCD Debugging > <launch script> (e.g.,

axiDemo_trion).
c. Click the Debugger tab.
d. Turn off Start OpenOCD locally.
e. Under Remote Target, change the Port number for the core yiou are using

(the default is 3333 for core 0).

● 3333: Core 0

www.elitestek.com 29

Sapphire RISC-V SoC Hardware and Software User Guide

● 3334: Core 1
● 3335: Core 2
● 3336: Core 3
6. Click Debug. Eclipse enters debug mode targeting the CPU that you specified

with the port number.

Figure 6: Modify Debug Configuration for another Core

www.elitestek.com 30

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 8

Boot Sequence
Contents:

● Boot Sequence: Case A
● Boot Sequence: Case B
● Boot Sequence: Case C
● Booting Multiple Cores

When the SoC loads and runs your software application, there are several
boot sequence scenarios, depending on where the application is stored. With
a bootloader, the embedded program loads the user binary from secondary
memory to primary memory during boot up. If your software application
is small enough (less than 4 KB), you can embed it in the on-chip RAM. It is
recommended to follow the procedure in Modify the Bootloader for building an
embedded user application.

Figure 7: Boot Sequence Flow Chart

Enable External
Memory?

no

yes

Start

Execute Application
in External Memory?

yes

no

Store Application
in SPI Flash?

yes

no

Case C

Case A

Case B

Table 16: User Application

Item Case A Case B Case C

Bootloader needed? Yes Yes No

Application storage SPI flash SPI flash On-chip RAM

Execute location External memory On-chip RAM On-chip RAM

The following sections describe these cases in more detail.

The Sapphire SoC supports multiple cores; Booting Multiple Cores on page
34 describes the programming sequence.

Boot Sequence: Case A

www.elitestek.com 31

Sapphire RISC-V SoC Hardware and Software User Guide

The following figure shows the interaction of the FPGA, SPI flash, and external
memory during booting.

Figure 8: Boot Sequence Diagram

0x0039_F000

0x0038_0000

0x0000_0000
FPGA

Bitstream

User
Application

Combined FPGA
Bitstream and User

Application Size

SPI Flash FPGA

RISC-V
1

2

CPU

SPI Bootloader

On-Chip
RAM

0xF900_0000

0xF900_0400

0xF900_1000

SPI
Channel

3 4

User
Application

External
Memory

0x0000_1000

0x0002_0000

5

The system starts from the PC's 0xF900_0000, which is the starting address of the
on-chip RAM. The bootloader, which reads a larger user application from the SPI
flash, is embedded by default.

1. The PC starts at the system address 0xF900_0000 of the on-chip RAM.
2. The bootloader starts reading the SPI Flash address 0x38_0000 for the user

application.
3. The bootloader writes the user application to external memory starting from

system address 0x0000_1000.
4. The bootloader finishes reading the user application from the SPI flash.
5. The PC jumps to system address 0x0000_1000 and starts to execute the user

application.
6. All accesses remain in the external memory space, which is malloc() by default

(unless you specify the on-chip RAM space in the software code)

Note: For RISC-V SoC booting from a flash device, the GPIOs for the SPI signals (system_spi_*) should
have the Register Option > register set in the Interface Designer. Refer to the IP Manager generated
example design to see how you should set up the SPI channel.

www.elitestek.com 32

Sapphire RISC-V SoC Hardware and Software User Guide

Boot Sequence: Case B
The following figure shows the interaction of the FPGA and SPI flash during
booting.

Figure 9: Boot Sequence Diagram

0x0038_0C00

0x0038_0000

0x0000_0000
FPGA

Bitstream

User
Application

Combined FPGA
Bitstream and User

Application Size

SPI Flash FPGA

RISC-V
1

2

CPU

SPI

Bootloader
On-Chip

RAM

0xF900_0000

0xF900_0C00

0xF900_1000

SPI
Channel

3

4

User
Application

The boot sequence is:

1. The PC starts at the system address 0xF900_0000 of the on-chip RAM.
2. The bootloader starts reading the SPI Flash address 0x0038_0000.
3. The bootloader writes the user application to On-Chip RAM starting from

system address 0xF900_0000.
4. The bootloader finishes reading the user application from the SPI flash.
5. The PC jumps to system address 0xF900_0000 and starts to execute the user

application.

Note: For RISC-V SoC booting from a flash device, the GPIOs for the SPI signals (system_spi_*) should
have the Register Option > register set in the Interface Designer. Refer to the IP Manager generated
example design to see how you should set up the SPI channel.

www.elitestek.com 33

Sapphire RISC-V SoC Hardware and Software User Guide

Boot Sequence: Case C
The following figure shows the interaction of the FPGA and SPI flash during
booting.

Figure 10: Boot Sequence Diagram

0x0000_0000

FPGA
Bitstream
plus Initial

Memory File
(User

Application)

Combined FPGA
Bitstream and User

Application Size

SPI Flash FPGA

RISC-V
1

2

CPU

On-Chip
RAM

0xF900_0000

0xF900_1000

SPI
Channel

3

User
Application

The boot sequence is:

1. The system starts from the PC's 0xF900_0000, which is the starting address of
the On-Chip RAM.

2. The user application is already compiled with the bitstream. It starts executing
automatically from the FPGA's BRAM.

Booting Multiple Cores
If you configure multiple cores, the Sapphire SoC has two or more identical
processors that share a common main memory and the same set of hardware
I/Os. The processors can execute programs simultaneously; one processor can
access the processed data or result from other processors because they are
connected in a shared backplane.

With symmetric multi-processing (SMP), you can share the workload across
all of the processors, resulting in less time to get a result compared to using
a single-core processor. Thus, SMP helps improve overall system throughput

www.elitestek.com 34

Sapphire RISC-V SoC Hardware and Software User Guide

and performance. The following flow chart explains how to do multi-core
programming in a baremetal environment.

Figure 11: Boot Sequence for Multiple Cores

Start

Core 0 handles the boot process
Other cores are redirected to a wait loop.

Boot process completes.
Core 0 wakes up other cores using the smp_unlock function.

Each core initializes its stack pointer based on its own hart
ID using the smpInit function.

Check each core is alive by printing the hart ID.

Program
Core 0

Program
Core 1

Program
Core 2

Program
Core 3

End

Table 17: SMP Helper Functions

File Description

start.S Functions to lock and unlock additional cores directory. To enable these
functions, you should include following flag in your makefile:

CFLAGS+=-DSMP

smpInit.S Function to initialize the core.

These files are located in the embedded_sw/standalone/common/ directory.

Each core has a dedicated interrupt ID for the PLIC to determine which core will
serve the external interrupts. Refer to bsp/efinix/EfxSapphireSoc/include/soc.h
for the interrupt ID definitions for each core:

#define SYSTEM_PLIC_SYSTEM_CORES_0_EXTERNAL_INTERRUPT 0
#define SYSTEM_PLIC_SYSTEM_CORES_1_EXTERNAL_INTERRUPT 1
#define SYSTEM_PLIC_SYSTEM_CORES_2_EXTERNAL_INTERRUPT 2
#define SYSTEM_PLIC_SYSTEM_CORES_3_EXTERNAL_INTERRUPT 3

For the Clint timer interrupt, each core has a dedicated MTIMECMP register that
you can use to set the trigger. You should provide the hart ID to the API to
determine which core will receive the interrupt from the Clint timer. For example:

clint_setCmp(BSP_CLINT, TriggerValue, HartID);

Each core has a dedicated floating-point unit, Linux memory management unit,
and custom instruction interface, if these features are enabled in IP Manager.

www.elitestek.com 35

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 9

Create Your Own RTL Design
Contents:

● Target another FPGA
● Target another 易灵思 Board
● Target Your Own Board
● Create a Custom AXI4 Slave Peripheral
● Create a Custom APB3 Peripheral
● Use another DDR DRAM Module (Trion Only)
● Use the I2C Interface for DDR Calibration
● Remove Unused Peripherals from the RTL Design

After you have explored the Sapphire SoC using the included example Efinity®

project, you can use these tips to modify the design for your own use.

Note: recommends that you use the provided example design project as a starting point instead of creating
a new project.

Target another FPGA
To change the design to target a different FPGA:

1. Edit the project to change the FPGA, package, and speed grade.
2. Update the interface design.

a. Open the Interface Designer. The software prompts you that a device
change was detected. Click Update Design. The Interface Designer opens
and shows invalid assignments in the Message Viewer.

b. Open the Resource Assigner.
c. Click the instance name in the Message Viewer. The software jumps to that

assignment in the Resource Assigner. Pick a new resource and press enter.
d. Continue re-assigning pins until all assignments are valid.
e. Generate a constraint file and close the Interface Designer.

3. Compile your modified design.

Target another 易灵思 Board
The Sapphire SoC BSP includes FTDI configuration files that specify the FTDI
device VID and PID and board description for 易灵思 development boards.

When you configure the SoC, you can choose which 易灵思 board to target with
the Debug tab > Target OpenOCD option. To target another board, change this
option and re-generate the SoC files.

Table 18: Provided FTDI Configuration Files

File Use for

ftdi.cfg Trion development board

ftdi_ti.cfg 钛金系列 Ti60 F225 Development Board

www.elitestek.com 36

Sapphire RISC-V SoC Hardware and Software User Guide

If you do not want to re-generate the SoC, you can also change the target 易灵思
board manually by editing the .cfg file. However, if you want to target your own
board, refer to Target Your Own Board on page 37 because the 易灵思 drivers
specifically target the FTDI chips used on 易灵思 boards and your board will
probably not have that chip.

To target a different 易灵思 development board manually, follow these steps with
the development board attached to the computer:

1. Open the Efinity® Programmer.
2. Click the Refresh USB Targets button to display the board name in the USB

Target drop-down list.
3. Make note of the board name.
4. In a text editor, open the ftdi.cfg or ftdi_ti.cfg file in the embedded_sw/<SoC

module>/bsp/efinix/EfxSapphireSoC/openocd directory.
5. Change the ftdi_device_desc setting to match the board name. For

example, use this code to change the name from Trion T120F324 Development
Board to Trion T120F576 Development Board:

interface ftdi
ftdi_device_desc "Trion T120F324 Development Board"
#ftdi_device_desc "Trion T120F576 Development Board"
ftdi_vid_pid 0x0403 0x6010

6. Save the file.
7. Debug as usual in OpenOCD.

Target Your Own Board
For your own board, you generally use an FTDI cable or another JTAG cable or
module. You can also use an FTDI chip on your board.

Using the FTDI C232HM-DDHSL-0 JTAG cable

The Sapphire SoC also includes a configuration file for the FTDI C232HM-
DDHSL-0 JTAG cable (c232hm_ddhsl_0.cfg), which bridges between your
computer's USB connector and the JTAG signals on the FPGA. If you use this cable
to connect your board to your computer, you can simply use this configuration
file instead of ftdi.cfg or ftdi_ti.cfg

Note: Refer to Connect the FTDI Cable on page 59 for instructions on using the cable.

Using another JTAG Cable or Module

Generally, when debugging your own board you use a JTAG cable to connect
your computer and the board. Therefore, you need to use the OpenOCD driver
for that cable when debugging. OpenOCD includes a number of configuration
files for standard hardware products. These files are located in the following
directory:

openocd/build-win64/share/openocd/scripts/interface (Windows)

openocd/build-x86_64/share/openocd/scripts/interface (Linux)

You can also write your own configuration file if desired.

Follow these instructions when debugging with your own board:

1. Connect your JTAG cable to the board and to your computer.
2. Copy the OpenOCD configuration file for your cable to the bsp/efinix/

EfxSapphireSoc/openocd directory.
3. Follow the instructions for debugging, except target your configuration file

instead of the ftdi.cfg (Trion) or ftdi_ti.cfg (钛金系列) file.

-f <path>/bsp/efinix/EfxSapphireSoc/openocd/<my cable>.cfg

www.elitestek.com 37

Sapphire RISC-V SoC Hardware and Software User Guide

Using an FTDI Chip on your Board

When you configure the Sapphire SoC in the IP Configuration wizard, choose
Target OpenOCD > Custom. Then, specify your board name. When you generate
the SoC, the ftdi.cfg file is populated with your board name. Edit the file for your
board's VID and PID.

Create a Custom AXI4 Slave Peripheral
When you generate an example design for the Sapphire SoC, the IP Manager
creates an example AXI4 peripheral and software code that you can use as a
template to create your own peripheral. This example uses the simple dual-port
RAM design to write to and read from the CPU through the AXI4 interface.
● Refer tothe axi4_slave module in design_modules.v in the

T120F324_devkit or Ti60F225_devkit directory for the RTL design.
● Refer to main.c in the embedded_sw/<SoC module>/software/

standalone/axiDemo/src directory for the C code.

Create a Custom APB3 Peripheral
When you generate an example design for the Sapphire SoC, the IP Manager
creates an APB3 peripheral and software code that you can use as a template to
create your own peripheral. This simple example shows how to implement an
APB3 slave wrapper.

● Refer tothe apb3_slave module in design_modules.v in the
T120F324_devkit or Ti60F225_devkit directory for the RTL design.

● Refer to main.c in the embedded_sw/<SoC module>/software/standalone/
apb3Demo/src directory for the C code.

Use another DDR DRAM Module (Trion Only)
The Trion® T120 BGA324 Development Board has an LPDDR3 DRAM module
with 256 Mbits x 16 bits supporting up to 4 Gb. If you want to target a different
module, you need to update the DDR block in the Interface Designer to reflect
the specifications for your rmodule.

Note: Refer to the Trion DDR DRAM Block User Guide for more information on changing the DDR block.

Use the I2C Interface for DDR Calibration
You can use the I2C interface to calibrate and reset the DDR DRAM
interface on the Trion® T120 BGA324 Development Board or
Trion® T120 BGA576 Development Board. If you want to use calibration:

1. In the Efinity Interface Designer, select the DDR block and turn on Enable
Control in the Block Editor's Control tab. Save.

2. In your RTL design, connect the I2C interface to the DDR block's I2C interface.
See the following example code:

// top level port
output ddr_inst1_CFG_SCL_IN,
output ddr_inst1_CFG_SDA_IN,
input ddr_inst1_CFG_SDA_OEN,

// assignment
assign ddr_inst1_CFG_SDA_OEN_workaround = ddr_inst1_CFG_SDA_OEN;

www.elitestek.com 38

Sapphire RISC-V SoC Hardware and Software User Guide

assign ddr_inst1_CFG_SDA_IN = system_i2c_2_io_sda_write &&
 ddr_inst1_CFG_SDA_OEN_workaround;
assign ddr_inst1_CFG_SCL_IN = system_i2c_2_io_scl_write;

assign system_i2c_2_io_sda_read = system_i2c_2_io_sda_write &&
 ddr_inst1_CFG_SDA_OEN_workaround;
assign system_i2c_2_io_scl_read = system_i2c_2_io_scl_write;

// SoC connection
.system_i2c_2_io_sda_write (system_i2c_2_io_sda_write),
.system_i2c_2_io_sda_read (system_i2c_2_io_sda_read),
.system_i2c_2_io_scl_write (system_i2c_2_io_scl_write),
.system_i2c_2_io_scl_read (system_i2c_2_io_scl_read),

3. Connect the DDR control pins in the Interface Designer's DDR Block Editor.

Remove Unused Peripherals from the RTL
Design
The Sapphire SoC includes a variety of peripherals. if you do not want to use a
peripheral, simply remove the signal name from within the parentheses () in the
SapphireSoc SapphireSoc_inst definition in the top-level Verilog HDL file. For
example, the SoC instantiation has these signals:

.system_i2c_0_io_sda_write (system_i2c_0_io_sda_write),

.system_i2c_0_io_sda_read (system_i2c_0_io_sda_read),

.system_i2c_0_io_scl_write (system_i2c_0_io_scl_write),

.system_i2c_0_io_scl_read (system_i2c_0_io_scl_read),

To disable I2C 0, remove the signal name in () as shown below:

.system_i2c_0_io_sda_write (),

.system_i2c_0_io_sda_read (),

.system_i2c_0_io_scl_write (),

.system_i2c_0_io_scl_read (),

www.elitestek.com 39

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 10

Create Your Own Software
Contents:

● Deploying an Application Binary
● About the Board Specific Package
● Address Map
● Example Software

Now that you have explored the methodology for designing with the Sapphire
SoC, you can develop your own software applications.

Note: The Sapphire SoC does not currently support floating point calculations, such as sine and cosine.

Deploying an Application Binary
During normal operation, your user binary application file (.bin) is stored in a SPI
flash device. When the FPGA powers up, the Sapphire SoC copies your binary file
from the SPI flash device to the DDR DRAM module, and then begins execution.

For debugging, you can load the user binary (.elf) directly into the Sapphire SoC
using the OpenOCD Debugger. After loading, the binary executes immediately.

Note: The settings in the linker prevent user access to the address. This setting allows the embedded
bootloader to work properly during a system reset after the user binary is executed but the FPGA is not
reconfigured.

Boot from a Flash Device
When the FPGA boots up, the Sapphire SoC copies your binary application
file from a SPI flash device to the external memory module, and then begins
execution. The SPI flash binary address starts at 0x0038_0000.

To boot from a SPI flash device:

1. Power up your board. The FPGA loads the configuration image from the on-
board flash device.

2. When configuration completes, the bootloader begins cloning a 124 KByte
user binary file from the flash device at physical address 0x0038_0000 to an
off-chip DRAM logical address of 0x0000_1000.

Note: It takes ~300 ms to clone a 124 KByte user binary (this is the default size).

3. The Sapphire SoC jumps to logical address 0x0000_1000 to execute the user
binary.

Note: Refer to Boot Sequence on page 31 for other possible boot scenarios.

www.elitestek.com 40

Sapphire RISC-V SoC Hardware and Software User Guide

Boot from the OpenOCD Debugger
To boot from the OpenOCD debugger:

1. Power up your board. The FPGA loads the configuration image from the on-
board flash device.

2. Launch Eclipse and set up the debug environment for your project.
3. The user binary is suspended on boot up. Click the Resume button to start the

program.

Note: Refer to Debug with the OpenOCD Debugger on page 28 for complete instructions.

Copy a User Binary to Flash (Efinity Programmer)
To boot from a flash device, you need to copy the application binary to the flash.
If you want to store the binary in the same flash device that holds the FPGA
bitstream, you can simply combine the two files and download the combined file
to the flash device with the Efinity Programmer.

1. Open the Efinity Programmer.
2. Click the Combine Multiple Image Files button.
3. Choose Mode > Generic Image Combination.
4. Enter a name for the combined file in Output File.
5. Click the Add Image button. The Open Image File dialog box opens.
6. Browse to the bitstream file, select it, and click Open.
7. Click the Add Image button a second time.
8. Browse to the RISC-V application binary file, select it, and click Open.
9. Specify the Flash Address as follows:

File Address

Bitstream 0x00000000

RISC-V application binary 0x00380000

Figure 12: Combining a Bitstream and RISC-V Application Binary

10.Click Apply. The software creates the combined .hex file in the specified
Output Directory (the default is the project outflow directory).

11.Program the flash with the .hex file using Programming Mode > SPI Active.

www.elitestek.com 41

Sapphire RISC-V SoC Hardware and Software User Guide

12.Reset the FPGA or power cycle the board.

Note: You can also use two terminals to copy the application binary to flash. Refer to Appendix: Copy a
User Binary to the Flash Device (2 Terminals) on page 100.

About the Board Specific Package
The board specific package (BSP) defines the address map and aligns with the
Sapphire SoC hardware address map. The BSP files are located in the bsp/
efinix/EfxSapphireSoC subdirectory.

Table 19: BSP Files

File or Directory Description

app Files used by the example software and bootloader.

include\soc.mk Supported instruction set.

include\soc.h Defines the system frequency and address map.

linker\default.ld Linker script for the main memory address and size.

linker\default_i.ld Linker script for the internal memory address and size.

linker\bootloader.ld Linker script for the bootloader address and size.

openocd OpenOCD configuration files.

www.elitestek.com 42

Sapphire RISC-V SoC Hardware and Software User Guide

Address Map
Because the address range might be updated, recommends that you always
refer to the parameter name when referencing an address in firmware, not by
the actual address. The parameter names and address mappings are defined in /
embedded_sw/<module>/bsp/efinix/EfxSapphireSoc/include/soc.h.

Note: If you need to update the address map, use the IP Configuration wizard to change the addressing and
then re-generate the SoC. Using this method keeps the software soc.h and FPGA netlist definitions aligned.

Table 20: Default Address Map, Interrupt ID, and Cached Channels
The AXI user slave channel is in a cacheless region (I/O) for compatibility with AXI-Lite.

Device Parameter Size Interrupt ID Region

Off-chip memory SYSTEM_DDR_BMB 4 MB to
3.5 GB

– Cache

GPIO 0 SYSTEM_GPIO_0_IO_CTRL 4 K [0]: 12
[1]: 13

I/O

GPIO 1 SYSTEM_GPIO_1_IO_CTRL 4 K [0]: 14
[1]: 15

I/O

I2C 0 SYSTEM_I2C_0_IO_CTRL 4 K 8 I/O

I2C 1 SYSTEM_I2C_1_IO_CTRL 4 K 9 I/O

I2C 2 SYSTEM_I2C_2_IO_CTRL 4 K 10 I/O

Core timer SYSTEM_CLINT_CTRL 4 K – I/O

PLIC SYSTEM_PLIC_CTRL 4 K – I/O

SPI master 0 SYSTEM_SPI_0_IO_CTRL 4 K 4 I/O

SPI master 1 SYSTEM_SPI_1_IO_CTRL 4 K 5 I/O

SPI master 2 SYSTEM_SPI_2_IO_CTRL 4 K 6 I/O

UART 0 SYSTEM_UART_0_IO_CTRL 4 K 1 I/O

UART 1 SYSTEM_UART_1_IO_CTRL 4 K 2 I/O

UART 2 SYSTEM_UART_2_IO_CTRL 4 K 3 I/O

User timer 0 SYSTEM_USER_TIMER_0_CTRL 4 K 19 I/O

User timer 1 SYSTEM_USER_TIMER_1_CTRL 4 K 20 I/O

User timer 2 SYSTEM_USER_TIMER_2_CTRL 4 K 21 I/O

User peripheral 0 IO_APB_SLAVE_0_CTRL 4 K to 1 MB – I/O

User peripheral 1 IO_APB_SLAVE_1_CTRL 4 K to 1 MB – I/O

User peripheral 2 IO_APB_SLAVE_2_CTRL 4 K to 1 MB – I/O

User peripheral 3 IO_APB_SLAVE_3_CTRL 4 K to 1 MB – I/O

User peripheral 4 IO_APB_SLAVE_4_CTRL 4 K to 1 MB – I/O

On-chip BRAM SYSTEM_RAM_A_BMB 1 - 512 KB – Cache

AXI user slave SYSTEM_AXI_A_BMB 1 K to
256 MB

– I/O

External interrupt – – [0]: 16
[1]: 17
[2]: 22
[3]: 23
[4]: 24
[5]: 25
[6]: 26
[7]: 27

I/O

www.elitestek.com 43

Sapphire RISC-V SoC Hardware and Software User Guide

For the cached regions, the burst length is equivalent to an AXI burst length of 8.
For the I/O region, the burst length is equivalent to an AXI burst length of 1. The
AXI user slave is compatible with AXI-Lite by disconnecting unused outputs and
driving a constant 1 to the input port.

Note: The RISC-V GCC compiler does not support user address spaces starting at 0x0000_0000.

The following figure shows the default address map and the corresponding
software parameters for modules in the memory space.

Figure 13: Sapphire Memory Space

Cached

0x0000_1000

SYSTEM_BRIDGE_BMB 0x0000_0000

SYSTEM_DDR_BMB

0x0002_0000

Cached
Bootloader (4 K)

Address Gap
(16 MB)

Address Gap
(16 MB)

0xE100_0000

0xF800_0000

0xF900_0000

0xFFFF_FFFF

APB3 I/O Space
(16 MB)

SYSTEM_AXI_A_BMB

AXI Slave
(4 KB - 256 MB)

SYSTEM_BMB_PERIPHERAL_BMB

User Application
124 KB

External Memory
Address Size

(4 MB - 3.5 GB)

On-Chip RAM
(4 KB to 512 MB)

SYSTEM_RAM_A_CTRL

www.elitestek.com 44

Sapphire RISC-V SoC Hardware and Software User Guide

The following figure shows the default address map and the corresponding
software parameters for I/O.

Figure 14: Sapphire I/O Space

0x00_0000 0xF800_0000

0x01_0000

0x01_7000

0x10_0000

0xB0_0000

0xFF_FFFF
Interrupt

SYSTEM_USER_TIMER_0_IO_CTRL

Custom Logic
Space

IO_APB_SLAVE_0_INPUT

SYSTEM_CLINT_CTRL

SYSTEM_UART_0_IO_CTRL

0x01_4000SYSTEM_SPI_0_IO_CTRL

0x01_5000SYSTEM_GPIO_0_IO_CTRL

0x01_6000SYSTEM_I2C_0_IO_CTRL

0xC0_0000SYSTEM_PLIC_CTRL

APB3 Custom
Devices

Timer, SPI, I2C,
GPIO, UART,
up to 256 devices

Default I/O address ofset: 0xF800_0000
Total: 16 MB

www.elitestek.com 45

Sapphire RISC-V SoC Hardware and Software User Guide

Example Software
To help you get started writing software for the Sapphire, 易灵思 provides a
variety of example software code that performs functions such as communicating
through the UART, controlling GPIO interrupts, performing Dhrystone
benchmarking, etc. Each example includes a makefile and src directory that
contains the source code.

Note: Many of these examples display messages on a UART. Refer to the following topics for information on
attaching a UART module and connecting to it in a terminal:
Learn how to attach a UART module.
Learn how to open an Eclipse terminal and connect to the UART module.

Table 21: Example Software Code

Directory Description

apb3Demo This example shows how to implement an ABP3 slave.

Axi4Demo This example illustrates how to implement a user AXI4 slave.

bootloader This software is the bootloader for the system.

common Provides linking for the makefiles.

compatibilityDemo This example shows how to migrate a software application from
the Sapphire SoC v1.1 to v2.0 or higher.

coreTimerInterruptDemo This example shows how to use the clint timer with interrupt.

customInstructionDemo This example illustrates how to implement a custom instruction.

coremark This example is a synthetic computing benchmark program.

dhrystone This example is a synthetic computing benchmark program.

driver This directory contains the system drivers for the peripherals
(I2C, UART, SPI, etc.). Refer to API Reference on page 75 for
details.

fpuDemo This example shows how to use the floating-point unit.

gpioDemo This example shows how to control the GPIO and its interrupt.

i2cDemo This example shows how to connect to an MCP4725 digital-to-
analog converter (DAC) using an I2C peripheral.

i2cSlaveDemo This example illustrates how an I2C slave communicates with the
master.

memTest This code performs a memory address and data test.

nestedInterruptDemo This example shows how to set a higher priority to an interrupt
routine, which allows the CPU to prioritize the task execution
instead of other interrupts.

openocdServer This folder provides launch scripts for the openOCD server. Refer
to Debug - Multiple Cores on page 29 for details.

smpDemo This example illustrates how to use multiple cores to execute the
Tiny encryption algorithm in parallel.

spiReadFlash This example shows how to read from a SPI flash device.

spiWriteFlash This example shows how to write to a SPI flash device.

spiDemo This code reads the device ID and JEDEC ID of a SPI flash device
and echoes the characters on a UART.

uartEchoDemo This example shows how to use the UART.

uartInterruptDemo This exmple shows how to use a UART interrupt.

userInterruptDemo This example demonstrates user interrupts with UART messages.

userTimerDemo This example shows how to use the user timer with interrupt.

www.elitestek.com 46

Sapphire RISC-V SoC Hardware and Software User Guide

Axi4Demo Design
This example (axi4Demo directory) performs a write and read test for the internal
BRAM that is attached to an AXI interface. First, the software writes to the internal
BRAM through the AXI interface. Next, it reads back the data and compares it to
the expected value. If the data is correct, the software writes Passed to a UART
terminal

The AXI bus interrupt pin triggers a software interrupt when write data to the AXI
bus is 0xABCD. The design displays these messages in a UART terminal:

axi4 slave demo !
Passed!
axi4 slave interrupt demo !
Entered AXI Interrupt Routine, Passed!

apb3Demo
This simple software design illustrates how to use an APB3 slave peripheral.

The APB3 slave is attached to a pseudorandom number generator. When you run
the application, the Sapphire SoC programs the APB3 slave to stop generating
a new random number and reads the last random number generated. The test
passes if the returned data is a non-zero value.

apb3 slave 0 demo !
Random number:
0xE1ECA84A
Passed!

compatibilityDemo
This example (compatibilityDemo directory) shows how to migrate an
application from the Sapphire Soc v1.1 to v2.0. To run your previously developed
software applications on v2.0, include compability.h and bsp.h at the top of your
code. These files map the v2.0 code and driver changes to the old SoC version.

This demo runs a machine timer with interrupt, which was available in v1.1. See
Migrating to the Sapphire SoC v2.0 from a Previous Version on page 61 for
additional migration details.

Hello world
BSP_MACHINE_TIMER 0
BSP_MACHINE_TIMER 1
BSP_MACHINE_TIMER 2
BSP_MACHINE_TIMER 3

coreTimerInterruptDemo
This demo (coreTimerInterruptDemo directory) shows how to use the core
timer and its interrupt function. This demo configures the core timer to generate
an interrupt every 1 second. It prints messages on a terminal when the SoC is
interrupted by the core timer.

core timer interrupt demo !
core timer interrupt 0
core timer interrupt 1
core timer interrupt 2
core timer interrupt 3
core timer interrupt 4
core timer interrupt 5
core timer interrupt 6
core timer interrupt 7
core timer interrupt 8
core timer interrupt 9

coremark

www.elitestek.com 47

Sapphire RISC-V SoC Hardware and Software User Guide

This code (coremark directory) is a benchmark application to measure CPU
performance. The final score is calculated based on the result of algorithm
processing (e.g., list processing, matrix manipulation, state machine, and
CRC). This application is configured to run 2,000 iterations with a runtime of
approximately 20s.

When you run the application, it displays information similar to the following in a
terminal:

coremark app is running, please wait...
2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks : 1117963326

Total time (secs): 11.179633

Iterations/Sec : 178.896745

Iterations : 2000

Compiler version : GCC8.3.0

Compiler flags : -o3

Memory location : STACK

seedcrc : 0xe9f5

[0]crclist : 0xe714

[0]crcmatrix : 0x1fd7

[0]crcstate : 0x8e3a

[0]crcfinal : 0x4983

Correct operation validated. See README.md for run and reporting rules.

CoreMark 1.0 : 178.896745 / GCC8.3.0 / -o3
 / STACK

customInstructionDemo
This demo (customInstructionDemo directory) shows how to use a custom
instruction to accelerate the processing time of an algorithm. It demonstrates
how performing an algorithm in hardware can provide significant acceleration vs,
using software only. This demo uses the Tiny encryption algorithm to encrypt two
32-bit unsigned integers with a 128-bit key. The encryption is 1,024 cycles.

The demo first processes the algorithm with a custom instruction, and then to
processes the same algorithm in software. Timestamps indicate how many clock
cycles are needed to output results. If both methods output the same results,
Passed! prints on a terminal. Otherwise, it prints Failed.

custom instruction demo !
please enable custom instruction plugin to run this demo

custom instruction processing clock cycles:1093
software processing clock cycles:36126

Passed!

www.elitestek.com 48

Sapphire RISC-V SoC Hardware and Software User Guide

dhrystone Example
The Dhrystone example (dhrystone directory) is a classic benchmark for
testing CPU performance. When you run this application, it performs dhrystone
benchmark testing and displays messages and results on a UART terminal.

The following code shows example results:

Dhrystone Benchmark, Version C, Version 2.2
 Program compiled without 'register' attribute
 Using time(), HZ=12000000
 Trying 500 runs through Dhrystone:
 Final values of the variables used in the benchmark:
 Int_Glob: 5
 should be: 5
 Bool_Glob: 1
 should be: 1
....
 Enum_Loc: 1
 should be: 1
 Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING
 should be: DHRYSTONE PROGRAM, 1'ST STRING
 Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING
 should be: DHRYSTONE PROGRAM, 2'ND STRING

 Microseconds for one run through Dhrystone: 40
 Dhrystones per Second: 24472
 User_Time : 245176
 Number_Of_Runs : 500
 HZ : 12000000
 DMIPS per Mhz: 1.16

fpuDemo
This example (fpuDemo directory) shows how to use the floating-point unit
to perform various mathematical operations such as calculating sine, cosine,
tangent, square root, and division. The demo records the number of clock cycles
needed to complete each calculation. You can turn off the floating-point unit in
the SoC's IP Configuration wizard to compare the FPU results with those obtained
using the base I-extension.

The processing time to obtain the results are faster and the binary size is smaller
when using the F/D-extension with floating-point unit.

fpu math demo !
rv32i (base-extension) is capable to perform floating-point calculation but
 rv32i requires
more processing time and instruction to calculate the result enable fpu with d-
extension
will sharply improve processing time and decrease app binary size

sine processing clock cycles:879

cosine processing clock cycles:864

tangent processing clock cycles:1148

square root processing clock cycles:2171

division processing clock cycles:377

Input i (in rad): 0.5820
Sine result: 0.5497
Cosine result: 0.8353
Tangent result: 0.6581

Input x: 3828.1234
Square root result: 61.8718
Divsion result: 1040.5619

gpioDemo
This example(gpioDemo directory) shows how to use the GPIO and its interrupt
function. LED(s) on the development board blink for about 5 seconds and then

www.elitestek.com 49

Sapphire RISC-V SoC Hardware and Software User Guide

the application goes into interrupt mode. Toggle system_gpio_0[0] to let the
GPIO go into the interrupt routine.

gpio 0 demo !
onboard LEDs blinking
gpio 0 interrupt demo !
Ti60 press and release onboard button sw6
T120 press and release onboard button sw7
gpio 0 interrupt routine

i2cDemo Example
The I2C interrupt example (i2cDemo directory) provides example code for an
I2C master writing data to and reading data from an off-chip MCP4725 device
with interrupt. The Microchip MCP4725 device is a single channel, 12-bit, voltage
output digital-to-analog converter (DAC) with an I2C interface.

The MCP4725 device is available on breakout boards from vendors such as
Adafruit and SparkFun. You can connect the breakout board's SDA and SCL pins
to a development board.

The code assumes that the I2C block is the only master on the bus, and it sends
frames in blocks. When you run it, the application connects to the MCP4725
device and increases the DAC value. It also prints the message Start on a UART
terminal.

In this example:
● void trap() traps entries on exceptions and interrupt events
● void externalInterrupt() triggers an interrupt event

i2cSlaveDemo Design
This example illustrates how an I2C slave communicates with the master. It uses
a 16-bit address and 16-bit data register for read and write. The slave is ready to
access the master after the Init Done message displays on the UART.

memTest Example
The memory test example (memTest directory) provides example code that
performs a memory test on the external memory module and reports the results
on a UART terminal. A successful test prints:

Memory test
Passed

If the memory test fails, the application prints Failed at address <address>.

nestedInterruptDemo
This demonstration (nestedInterruptDemo directory) illustrates how to escalate
from an interrupt routine and to execute higher priority routine. The program
returns to the lower priority routine after the higher priority routine finished
executing. This demo instantiates two user timers; timer 0 has higher priority than
timer 1. Timer 0 interrupts the CPU multiple times. The CPU then executes the
timer 0 interrupt routine in the middle of executing the timer 1 interrupt routine.

The demo outputs the following messages to a terminal:

T1S
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP

www.elitestek.com 50

Sapphire RISC-V SoC Hardware and Software User Guide

T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T0S-HP
T0E-HP
T1E

openocdServer
This code (openocdServer directory) contains OpenOCD debug scripts to launch
the OpenOCD server without the debugger. This script is intended for multi-core
debug in standalone environment. Refer to Debug - Multiple Cores on page 29
for more details.

smpDemo
This demo (smpDemo directory) illustrates how to use multiple cores to process
multiple encryption pat the same time in parallel. Each core is assigned an
encryption algorithm with an input keys (each core has a different key). Core 0
prints the final encrypted values after the other cores complete the encryption.
If a single core performed the encryption, it would take four times more clock
cycles to complete the process.

Note: Step-by-step debugging is not available in multi-core symmetric processing mode.

The demo outputs the following messages to a terminal:

smpDemo with multiple cpu processing
synced!
processing clock cycles:24353

hart 0 encrypted output A:167C6CC6
hart 0 encrypted output B:465E6781
hart 1 encrypted output A:E39A3A87
hart 1 encrypted output B:70CF21D1
hart 2 encrypted output A:CBA365FF
hart 2 encrypted output B:003FDFA8
hart 3 encrypted output A:93D5278B
hart 3 encrypted output B:62F40A6F

spiReadFlashDemo Example
The read flash example (spiReadFlashDemo directory) shows how to read data
from the SPI flash device on the development board. The software reads 124K of
data starting at address 0x380000, which is the default location of the user binary
in the flash device. The application displays messages on a UART terminal:

Read Flash Start
Addr 00380000 : =FF
Addr 00380001 : =FF
Addr 00380002 : =FF
...
Addr 0039EFFE : =FF
Addr 0039EFFF : =FF
Read Flash End

www.elitestek.com 51

Sapphire RISC-V SoC Hardware and Software User Guide

spiWriteFlashDemo Example
The read flash example (spiWriteFlashDemo directory) shows how to write
data to the SPI flash device on the development board. The software writes data
starting at address 0x380000, which is the default location of the user binary in
the flash device. The application displays address and data messages on a UART
terminal:

Write Flash Start
WR Addr 00380000 : =00
WR Addr 00380001 : =01
WR Addr 00380002 : =02
...
WR Addr 003800FD : =FD
WR Addr 003800FE : =FE
WR Addr 003800FF : =FF
Write Flash End

spiDemo Example
The SPI example (spiDemo directory) provides example code for reading the
device ID and JEDEC ID of the SPI flash device on the development board.
● The default base address map of the SPI flash master is 0xF801_4000.
● The default SCK frequency is half of the SoC system clock frequency.
● The default base address of the UART is 0xF801_0000 with a default baud rate

of 115200.

The application displays the results on a UART terminal. It continues to print to
the terminal until you suspend or stop the application.

spi 0 demo !
Device ID : 17
CMD 0x9F : EF4018
CMD 0x9F : EF4018
...

uartEchoDemo
This demo (uartEchoDemo directory) shows how to use the UART to print
messages on a terminal. The characters you type on a keyboard are echoed back
to the terminal from the SoC and printed on the terminal.

uart echo demo !
start typing on terminal to send character...
echo character:l
echo character:k
echo character:m

UartInterruptDemo Example
The UartInterruptDemo example shows how to use a UART interrupt to indicate
task completion when sending or receiving data over a UART. The UART can
trigger a interrupt when data is available in the UART receiver FIFO or when the
UART transmitter FIFO is empty. In this example, when you type a character in a
UART terminal, the data goes to the UART receiver and fills up FIFO buffer. This
action interrupts the processor and forces the processor to execute an interrupt/
priority routine that allows the UART to read from the buffer and send a message
back to the terminal.

The application displays messages on a UART terminal:

RX FIFO not empty interrupt
RX FIFO not empty interrupt
RX FIFO not empty interrupt

userInterruptDemo Example

www.elitestek.com 52

Sapphire RISC-V SoC Hardware and Software User Guide

This demo (userInterruptDemo directory) shows how to handle a user interrupt
that accepts an interrupt signal from user logic. In this demo, ten seconds after
the Sapphire SoC comes out of reset, the user interrupt gets a trigger from the
external module. Operation jumps from the main routine to the interrupt routine.
When the interrupt code finishes executing, it jumps back to the main routine.

The application displays the messages on a UART terminal:

User Interrupt Demo, waiting for user interrupt...
Entered User Interrupt A Routine

userTimerDemo
This demo (userTimerDemo directory) shows how use the user timer and
its interrupt function. This demo configures the user timer and its prescaler
setting, which you use to further scale down the frequency used by the timer's
counter. When the timer's counter reaches the targeted tick value, it generates
an interrupt signal to interrupt the controller to let the SoC jump from the main
routine to the interrupt routine.

user timer 0 demo !
user timer 0 interrupt routine
user timer 0 interrupt routine
user timer 0 interrupt routine
user timer 0 interrupt routine

FreeRTOS Examples
The Sapphire SoC supports the popular FreeRTOS real-time operating system,
and includes example software projects targeting the RTOS. For more details on
using FreeRTOS, go to their web site at https://www.freertos.org.

Download the FreeRTOS

The freeRTOS examples require you to download FreeRTOS.

1. Download the FreeRTOS zip file from https://www.freertos.org. recommends
using FreeRTOS v10.4.1.

2. Unzip the files into the embedded_sw/<SoC module>/software directory.

After you have downloaded the FreeRTOS, you use the software projects in the
same manner as the other example software.

freertosDemo

This example shows how the FreeRTOS schedular handles two program
executions using task and queue allocation. Generally, the FreeRTOS queue is
used as a thread FIFO buffer and for intertask communication. This example
creates two tasks and one queue; the queue sends and receives traffic. The
receive traffic (or receive queue) blocks the program execution until it receives a
matching value from the send traffic (or send queue).

Tasks in the send queue sit in a loop that blocks execution for 1,000 miliseconds
before sending the value 100 to the receive queue. Once the value is sent, the
task loops, i.e., blocks for another 1,000 miliseconds.

When the receive queue receives the value 100, it begins executing its task, which
sends the message Blink to the UART peripheral and toggles an LED on the
development board.

Hello world, this is FreeRTOS
Blink
Blink
Blink

www.elitestek.com 53

Sapphire RISC-V SoC Hardware and Software User Guide

freertosDemo2

This example shows how FreeRTOS schedular handles two program executions
using a binary semaphore. The semaphore holds the hardware resource
until one of the tasks execute, which then releases it to the next task. If the
hardware resource is running a task, no other task can use that resource. In this
example, two tasks use the same UART peripheral to print messages. By using a
semaphore, the two tasks have alternate access to the UART peripheral.

Hello world, this is FreeRTOS
Inside uart task 1 loop
Inside uart task 2 loop
Inside uart task 1 loop
Inside uart task 2 loop
Inside uart task 1 loop
Inside uart task 2 loop

freertosUartInterruptDemo Example
This demo illustrates the same operation as the uartInterruptDemo, but it
executes using the FreeRTOS software framework. The tasks and queues are
allocated to an interrupt routine so that the FreeRTOS scheduler can control the
execution with the given priority.

The application displays messages on a UART terminal:

Hello world
RX FIFO not empty interrupt
RX FIFO not empty interrupt
RX FIFO not empty interrupt

www.elitestek.com 54

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 11

Using a UART Module
Contents:

● Using the On-board UART ()
● Set Up a USB-to-UART Module (Trion)
● Open a Terminal
● Enable Telnet on Windows

A number of the software examples display messages on a UART terminal. If
you are using a development board, you can simply connect a USB cable to the
board and to your computer. For Trion development boards, you need to use a
USB-to-UART converter.

Using the On-board UART ()
The 钛金系列 Ti60 F225 Development Board has a USB-to-UART converter
connected to the Ti60's GPIOL_01 and GPIOL_02 pins. To use the
UART, simply connect a USB cable to the FTDI USB connector on the
钛金系列 Ti60 F225 Development Board and to your computer.

Note: The board has an FTDI chip to bridge communication from the USB connector. FTDI interface 2
communicates with the on-board UART. You do not need to install a driver for this interface because when
you connect the 钛金系列 Ti60 F225 Development Board to your computer, Windows automatically installs a
driver for it.

Finding the COM Port (Windows)

1. Type Device Manager in the Windows search box.
2. Expand Ports (COM & LPT) to find out which COM port Windows assigned to

the UART module. You should see 2 devices listed as USB Serial Port (COMn)
where n is the assigned port number. Note the COM number for the first
device; that is the UART.

Finding the COM Port (Linux)

In a terminal, type the command:

ls /dev/ttyUSB*

The terminal displays a list of attached devices.

/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2 /dev/ttyUSB3

The UART is /dev/ttyUSB2.

Set Up a USB-to-UART Module (Trion)
The Trion® T120 BGA324 Development Board does not have a USB-to-UART
converter, therefore, you need to use a separate USB-to-UART converter module.

www.elitestek.com 55

Sapphire RISC-V SoC Hardware and Software User Guide

A number of modules are available from various vendors; any USB-to-UART
module should work.

Figure 15: Connect the UART Module to PMOD Connector J12

J12 (PMOD)

GPIOT_RXN21
Ground

UART
to USB
Module

J13 (PMOD)J15 (Ethernet)

RX

Ground
TX

GPIOT_RXP20
123456

789101112
Ground

USB
Connector

Power
Switch

1. Connect the UART module to the PMOD port J12
● RX—GPIOT_RXP20, which is pin 1 on PMOD J12
● TX—GPIOT_RXN21, which is pin 2 on PMOD J12
● Ground—Use ground pin 5 or 11 on PMOD J12.

2. Plug the UART module into a USB port on your computer. The driver should
install automatically if needed.

Finding the COM Port (Windows)

1. Type Device Manager in the Windows search box.
2. Expand Ports (COM & LPT) to find out which COM port Windows assigned

to the UART module; it is listed as USB Serial Port (COMn) where n is the
assigned port number. Note the COM number.

Finding the COM Port (Linux)

In a terminal, type the command:

dmesg | grep ttyUSB

The terminal displays a series of messages about the attached devices.

usb <number>: <adapter> now attached to ttyUSB<number>

There are many USB-to-UART converter modules on the market. Some use an
FTDI chip which displays a message similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0

However, the Trion® T120 BGA324 Development Board also has an FTDI chip and
gives the same message. So if you have both the UART module and the board
attached at the same time, you may receive three messages similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB1
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB2

In this case the second 2 lines (marked by usb 3-2) are the development board
and the first line (usb 3-3) is the UART module.

Open a Terminal
You can use any terminal program, such as Putty, termite, or the built-in Eclipse
terminal, to connect to the UART. These instructions explain how to use the
Eclipse terminal; the others are similar.

www.elitestek.com 56

Sapphire RISC-V SoC Hardware and Software User Guide

1. In Eclipse, choose Window > Show View > Terminal. The Terminal tab opens.
Open a Terminal
Disconnect Terminal Connection

2. Click the Open a Terminal button.
3. In the Launch Terminal dialog box, enter these settings:

Option Setting

Choose terminal Serial Terminal

Serial port COMn (Windows) or ttyUSBn (Linux)
where n is the port number for your UART module.

Baud rate 115200

Data size 8

Parity None

Stop bits 1

Encoding Default (ISO-8859-1)

4. Click OK. The terminal opens a connection to the UART.
5. Run your application. Messages are printed in the terminal.
6. When you are finished using the application, click the Disconnect Terminal

Connection button.

Enable Telnet on Windows
Windows does not have telnet turned on by default. Follow these instructions to
enable it:

1. Type telnet in the Windows search box.
2. Click Turn Windows features on or off (Control panel). The Windows

Features dialog box opens.
3. Scroll down to Telnet Client and click the checkbox.
4. Click OK. Windows enables telnet.
5. Click Close.

www.elitestek.com 57

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 12

Using a Soft JTAG Core for Example Designs
Contents:

● Connect the FTDI Cable

The Efinity® Debugger uses the hard JTAG TAP interface. Out of the box,
the Sapphire SoC example design also uses the hard JTAG TAP interface for
OpenOCD. If you try to use the same USB connection to the development board
for both applications at the same time, they will conflict. To solve this problem,
you use a soft JTAG block to handle the OpenOCD JTAG communication. With
this method, you use an FTDI chip cable to connect the board to your computer
(the Efinity® Debugger uses the USB cable).

The simplest way to implement a soft JTAG interface is to use the IP Manager to
output an example design that enables the soft JTAG interface. The IP Manager
automatically connects the soft JTAG pins to PMOD J12 when you turn on the
Soft Debug Tap option.

Note: recommends you use the C232HM-DDHSL-0 FTDI chip cable rather than a JTAG mini-module because
the software generated by the IP Manager includes the debug configuration file for the cable.

www.elitestek.com 58

Sapphire RISC-V SoC Hardware and Software User Guide

Connect the FTDI Cable
When you turn on the Enable Soft JTAG TAP option in the IP Configuration
wizard, the example design assigns the JTAG pins to resources in the interface
design. Use the following figures to connect the table to the JTAG pins.

Note: If you have not already done so, install the driver for the FTDI cable as described in Installing USB
Drivers on page 20.

Connecting to the 钛金系列 Ti60 F225 Development Board

Figure 16: Connecting the C232HM-DDHSL-0 Cable

USB
Connector

1

2

39

40 3638

MIPI and LVDS
Expansion Card

P2

Ti60 F225 Development Board

34 3032

Ground

TMS GPIOR_28

TDO GPIOR_27

TCK GPIOR_24TDI GPIOR_25

FTDI Cable

Table 22: FDTI to Daughter Card Connections

Port Resource MIPI and LVDS Expansion
Daughter Card (P2) Pin

TCK GPIOR_24 32

TDI GPIOR_25 34

TDO GPIOR_27 38

TMS GPIOR_28 40

GND – 36

www.elitestek.com 59

Sapphire RISC-V SoC Hardware and Software User Guide

Connecting to the Trion® T120 BGA324 Development Board

Figure 17: Connecting the C232HM-DDHSL-0 Cable

J12 (PMOD)

Ground

J13 (PMOD)J15 (Ethernet)

12346

789101112
Power
Switch

5

USB
Connector

TDI
GPIOT_RXN21

TDO
GPIOT_RXN22

TMS
GPIOT_RXN23

TCK
GPIOT_RXN20

Table 23: FDTI to PMOD Connections

Port Resource PMOD (J12) Pin

TCK GPIOT_RXN20 7

TDI GPIOT_RXN21 8

TDO GPIOT_RXN22 9

TMS GPIOT_RXN23 10

GND – 5 or 11

Debugging in Eclipse

1. Open your Eclipse project.
2. Run or debug the software with the OpenOCD debugger using the

default_softTap launch configuration.
3. Refer to Debug with the OpenOCD Debugger on page 28 for complete

instructions.
4. Open the Debugger to perform hardware debugging.

www.elitestek.com 60

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 13

Migrating to the Sapphire SoC
Contents:

● Migrating to the Sapphire SoC v2.0 from a Previous Version
● Migrating Ruby, Jade, and Opal to the Sapphire SoC

Migrating to the Sapphire SoC v2.0 from a
Previous Version
The Sapphire SoC v2.0 available in the Efinity software v2021.2 has many new
features compared to previous versions, and the IP Configuration wizard
and drivers are updated to reflect these new features. Therefore, you cannot
automatically migrate an existing design to v2.0. If you want to migrate to v2.0,
the following sections provide some guidelines.

Note: recommends that you use v2.0 for all new designs.

IP Configuration Wizard

The configurstion options for the Sapphire SoC v2.0 support new features such as
more configurable caching, FPU, MMU, and a peripheral clock. Use the following
settings to create a v2.0 SoC that is similar to previous versions.

Table 24: IP Configuration Settings

Tab Option Setting Notes

Peripheral Clock DISABLE In v1.x, the APB3 peripherals are driven by the
system clock. In v2.0, set this option to DISABLE.

Custom Instruction DISABLE

Linux Memory Management
Unit

DISABLE

Floating-point Unit DISABLE

SOC

Atomic extension DISABLE

Not supported in v1.x

Data Cache Way 1

Data Cache Size 4 KB (v1.0)
1 KB, 2 KB, 4

KB, 8 KB, 16 KB,
or 32 KB (v1.1)

Instruction Cache Way 1

Instruction Cache Size 4 KB (v1.0)
1 KB, 2 KB, 4

KB, 8 KB, 16 KB,
or 32 KB (v1.1)

In v1.0, the SoC has a fixed I$ and D$ cache way (1
way) and size (4 KB).
In v1.1, the wizard supports 1 ways and 1 KB, 2 KB,
4 KB, 8 KB, 16 KB, or 32 KB

External Memory AXI3
Interface

DISABLE (v1.0)
ENABLE or

DISABLE (v1.1)

In v1.x, an external memory interface is not
supported with a cacheless CPU

Cache/Memory

On-Chip RAM Size 1 KB, 2 KB, 4
KB, 8 KB, 16
KB, 32 KB, 64

KB, 128 KB, 256
KB, or 512 KB

The v1.x SoC supports fewer sizes for On-Chip
RAM. Choose one of these options in v2.0 for
compatibility.

www.elitestek.com 61

Sapphire RISC-V SoC Hardware and Software User Guide

Tab Option Setting Notes

Target OpenOCD See v2.0
options

This option is not supported in v1.0.
This option is the same in v1.1 and v2.0.

Custom Target OpenOCD See v2.0
options

This option is not supported in v1.0.
This option is the same in v1.1 and v2.0.

Debug

OpenOCD Debug Mode Any This option is not supported in v1.x. However, you
can choose either option because it sets Eclipse
environment variables and does not affect the
SoC.

Debug Configuration

The default_softTap debug configuration file is updated in v2.0. Therefore, you
cannot use the default_softTap generated with v1.1 with v2.0. If you are using
v2.0, you need to remove the old default_softTap debug configuration from
your Eclipse project and import the v2.0 one. See Appendix: Import the Debug
Configuration on page 99 for instructions.

Application Software

In v2.0, the there are several changes to the generated embedded software:

● SoC device names and definitions—The device names and definitions
in the soc.h file are updated. The v2.0 embedded software includes the
file compability.h, which converts the naming from v1.x to v2.0. Include
compability.h at the top of your software application code to convert the
names. You can also reference the example compabilityDemo in the /
embedded_sw/<module name>/software/standalone folder.

● Core timer driver—The machine timer is replaced with the Clint timer, which
is a native CPU timer. The software driver code is slightly different than the
code for the machine timer. To convert from the machine timer function to the
Clint timer function, include the compability.h and bsp.h at the top of your
software application code.

Note: compatibilityDemo on page 47 provides an example of how to use compability.h and bsp.h.

www.elitestek.com 62

Sapphire RISC-V SoC Hardware and Software User Guide

Migrating Ruby, Jade, and Opal to the Sapphire
SoC
The Ruby, Jade, and Opal SoCs are end of life in the Efinity software v2022.1. The
following sections provide the parameters you should set in the Sapphire SoC IP
Configuration wizard to get the same functionality as Ruby, Jade, or Opal.

Ruby Configuration

Parameter Setting Address

Core Number 1

Frequency Configurable

Peripheral Clock No

Cache Yes

Custom Instruction No

Linux Memory
Management Unit

No

Floating-point unit No

SOC

Atomic Extension No

Data Cache Way 1

Data Cache Size 4KB

Instruction Cache Way 1

Instruction Cache Size 4KB

External Memory
Interface

Yes

AXI Interface Type AXI3

External Memory Data
Width

128

External Memory
Address Size

3.5GB

On-Chip RAM Size Configurable 0xf9000000

Cache/Memory

Custom On-Chip RAM
Application

No

Soft Debug Tap Configurable

FPGA Tap Port Configurable

Target Board Configurable

Application Region Size -

Application Stack Size -

Debug

Application Debug
Mode

-

UART0 Yes 0xf8010000

UART0 Interrupt ID 1

UART1 Yes 0xf8011000

UART1 Interrupt ID 2

UART2 No

UART

UART2 Interrupt ID -

SPI0 Yes 0xf8014000

SPI0 Interrupt ID 4

SPI

SPI1 Yes 0xf8015000

www.elitestek.com 63

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

SPI1 Interrupt ID 5

SPI2 Yes 0xf8016000

SPI2 Interrupt ID 6

I2C0 Yes 0xf8018000

I2C0 Interrupt ID 8

I2C1 Yes 0xf8019000

I2C1 Interrupt ID 9

I2C2 Yes 0xf801A0000

I2C

I2C2 Interrupt ID 10

GPIO0 Yes 0xf8000000

GPIO0 Width 16

GPIO0 Interrupt ID 12, 13

GPIO1 No

GPIO1 Width -

GPIO

GPIO1 Interrupt ID -

APB3 Slave Size 64KB

APB0 Yes 0xf8800000

APB1 Yes 0xf8810000

APB2 No

APB3 No

APB3

APB4 No

AXI Slave Yes 0xfa000000

AXI Slave Size 16MB

AXI Master 0 Yes

AXI Master 0 Data
Width

32

AXI Master 1 -

AXI4

AXI Master 1 Data
Width

-

User Interrupt A Yes

User Interrupt A ID 25

User Interrupt B No

User Interrupt B ID -

User Interrupt C No

User Interrupt C ID -

User Interrupt D No

User Interrupt D ID -

User Interrupt E No

User Interrupt E ID -

User Interrupt F No

User Interrupt F ID -

User Interrupt G No

User Interrupt G ID -

User Interrupt H No

User Interrupt

User Interrupt H ID -

www.elitestek.com 64

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

User Timer 0 No

User Timer 0 Counter
Width

-

User Timer 0 Prescaler
Width

-

User Timer 0 Interrupt
ID

-

User Timer 1 No

User Timer 1 Counter
Width

-

User Timer 1 Prescaler
Width

-

User Timer 1 Interrupt
ID

-

User Timer 2 No

User Timer 2 Counter
Width

-

User Timer 2 Prescaler
Width

-

User Timer

User Timer 2 Interrupt
ID

-

Jade Configuration

Parameter Setting Address

Core Number 1

Frequency Configurable

Peripheral Clock No

Cache Yes

Custom Instruction No

Linux Memory
Management Unit

No

Floating-point unit No

SOC

Atomic Extension No

Data Cache Way 1

Data Cache Size 4KB

Instruction Cache Way 1

Instruction Cache Size 4KB

External Memory
Interface

No

AXI Interface Type -

External Memory Data
Width

-

External Memory
Address Size

-

On-Chip RAM Size Configurable 0xf9000000

Cache/Memory

Custom On-Chip RAM
Application

No

Soft Debug Tap Configurable

FPGA Tap Port Configurable

Debug

Target Board Configurable

www.elitestek.com 65

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

Application Region Size -

Application Stack Size -

Application Debug
Mode

-

UART0 Yes 0xf8010000

UART0 Interrupt ID 1

UART1 No

UART1 Interrupt ID -

UART2 No

UART

UART2 Interrupt ID -

SPI0 Yes 0xf8014000

SPI0 Interrupt ID 4

SPI1 Yes 0xf8015000

SPI1 Interrupt ID 5

SPI2 -

SPI

SPI2 Interrupt ID -

I2C0 Yes 0xf8018000

I2C0 Interrupt ID 8

I2C1 Yes 0xf8019000

I2C1 Interrupt ID 9

I2C2 No

I2C

I2C2 Interrupt ID -

GPIO0 Yes 0xf8000000

GPIO0 Width 16

GPIO0 Interrupt ID 12, 13

GPIO1 No

GPIO1 Width -

GPIO

GPIO1 Interrupt ID -

APB3 Slave Size 64KB

APB0 Yes 0xf8800000

APB1 No

APB2 No

APB3 No

APB3

APB4 No

AXI Slave No

AXI Slave Size -

AXI Master 0 -

AXI Master 0 Data
Width

-

AXI Master 1 -

AXI4

AXI Master 1 Data
Width

-

User Interrupt A Yes

User Interrupt A ID 25

User Interrupt

User Interrupt B No

www.elitestek.com 66

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

User Interrupt B ID -

User Interrupt C No

User Interrupt C ID -

User Interrupt D No

User Interrupt D ID -

User Interrupt E No

User Interrupt E ID -

User Interrupt F No

User Interrupt F ID -

User Interrupt G No

User Interrupt G ID -

User Interrupt H No

User Interrupt H ID -

User Timer 0 No

User Timer 0 Counter
Width

-

User Timer 0 Prescaler
Width

-

User Timer 0 Interrupt
ID

-

User Timer 1 No

User Timer 1 Counter
Width

-

User Timer 1 Prescaler
Width

-

User Timer 1 Interrupt
ID

-

User Timer 2 No

User Timer 2 Counter
Width

-

User Timer 2 Prescaler
Width

-

User Timer

User Timer 2 Interrupt
ID

-

Opal Configuration

Parameter Setting Address

Core Number 1

Frequency Configurable

Peripheral Clock No

Cache No

Custom Instruction -

Linux Memory
Management Unit

-

Floating-point unit -

SOC

Atomic Extension -

Data Cache Way -Cache/Memory

Data Cache Size -

www.elitestek.com 67

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

Instruction Cache Way -

Instruction Cache Size -

External Memory
Interface

No

AXI Interface Type -

External Memory Data
Width

-

External Memory
Address Size

-

On-Chip RAM Size Configurable 0xf9000000

Custom On-Chip RAM
Application

No

Soft Debug Tap Configurable

FPGA Tap Port Configurable

Target Board Configurable

Application Region Size -

Application Stack Size -

Debug

Application Debug
Mode

-

UART0 Yes 0xf8010000

UART0 Interrupt ID 1

UART1 No

UART1 Interrupt ID -

UART2 No

UART

UART2 Interrupt ID -

SPI0 Yes 0xf8014000

SPI0 Interrupt ID 4

SPI1 No

SPI1 Interrupt ID -

SPI2 -

SPI

SPI2 Interrupt ID -

I2C0 Yes 0xf8018000

I2C0 Interrupt ID 8

I2C1 No

I2C1 Interrupt ID -

I2C2 No

I2C

I2C2 Interrupt ID -

GPIO0 Yes 0xf8000000

GPIO0 Width 8

GPIO0 Interrupt ID 12, 13

GPIO1 No

GPIO1 Width -

GPIO

GPIO1 Interrupt ID -

APB3 Slave Size 64KB

APB0 Yes 0xf8800000

APB3

APB1 No

www.elitestek.com 68

Sapphire RISC-V SoC Hardware and Software User Guide

Parameter Setting Address

APB2 No

APB3 No

APB4 No

AXI Slave No

AXI Slave Size -

AXI Master 0 -

AXI Master 0 Data
Width

-

AXI Master 1 -

AXI4

AXI Master 1 Data
Width

-

User Interrupt A Yes

User Interrupt A ID 25

User Interrupt B No

User Interrupt B ID -

User Interrupt C No

User Interrupt C ID -

User Interrupt D No

User Interrupt D ID -

User Interrupt E No

User Interrupt E ID -

User Interrupt F No

User Interrupt F ID -

User Interrupt G No

User Interrupt G ID -

User Interrupt H No

User Interrupt

User Interrupt H ID -

User Timer 0 No

User Timer 0 Counter
Width

-

User Timer 0 Prescaler
Width

-

User Timer 0 Interrupt
ID

-

User Timer 1 No

User Timer 1 Counter
Width

-

User Timer 1 Prescaler
Width

-

User Timer 1 Interrupt
ID

-

User Timer 2 No

User Timer 2 Counter
Width

-

User Timer 2 Prescaler
Width

-

User Timer

User Timer 2 Interrupt
ID

-

www.elitestek.com 69

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 14

Troubleshooting
Contents:

● Error 0x80010135: Path too long (Windows)
● OpenOCD Error: timed out while waiting for target halted
● Memory Test
● OpenOCD error code (-1073741515)
● OpenOCD Error: no device found
● OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
● OpenOCD Error: target 'fpga_spinal.cpu0' init failed
● Eclipse Fails to Launch with Exit Code 13
● Efinity Debugger Crashes when using OpenOCD
● Undefined Reference to 'cosf'
● Exception in thread "main"

Error 0x80010135: Path too long (Windows)
When you unzip the SDK on Windows, you may get the error message:

An unuexpected error is keeping you from copying the file. If you continue
to receive this error, you can use the error code to search for help with
this problem.

Error 0x80010135: Path too long

This error occurs if you try to unzip the SDK files into a deep folder hierarchy
instead of one that is close to the root level. Instead unzip to c:\riscv-sdk.

OpenOCD Error: timed out while waiting for
target halted
The OpenOCD debugger console may display this error when:
● There is a bad contact between the FPGA header pins and the programming

cable.
● The FPGA is not configured with a Sapphire SoC design.
● You may not have the correct PLL settings to work with the Sapphire SoC.
● Your computer does not have enough memory to run the program.

To solve this problem:
● Make sure that all of the cables are securly connected to the board and your

computer.
● Check the JTAG connection.

www.elitestek.com 70

Sapphire RISC-V SoC Hardware and Software User Guide

Memory Test
Your user binary may not boot correctly if there is a memory corruption problem
(that is, the communication between the DDR hard controller and memory
module is not functioning). This issue can appear when booting using the SPI
flash or OpenOCD debugger. The following instructions provide a debugging
flow to determine whether you system has this problem. You use two command
prompts or shells to perform the test:
● The first terminal opens an OpenOCD connection to the SoC.
● The second connects to the first terminal for performing the test.

Important: If you are using the OpenOCD debugger in Eclipse, terminate any debug processes before
performing this test.

Set Up Terminal 1

1. Open a Windows command prompt or Linux shell.
2. Change to SDK_Windows or SDK_Ubuntu.
3. Execute the setup.bat (Windows) or setup.sh (Linux) script.
4. Change to the directory that has the cpu0.yaml file.
5. Type the following commands to set up the OpenOCD server:

Windows:

openocd.exe -f bsp\efinix\EfxSapphireSoc\openocd\ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxSapphireSoc\openocd\flash.cfg

Linux:

openocd -f bsp/efinix/EfxSapphireSoc/openocd/ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxSapphireSoc/openocd/flash.cfg

The OpenOCD server connects and begins listening on port 4444.

www.elitestek.com 71

Sapphire RISC-V SoC Hardware and Software User Guide

Set Up Terminal 2

1. Open a second command prompt or shell.
2. Enable telnet if it is not turned on. Turn on telnet (Windows)
3. Open a telnet host on port 4444 with the command telnet localhost

4444.
4. To test the on-chip RAM, use the mdw command to get the bootloader binary.

Type the command mdw <address> <number of 32-bit words> to display the
content of the memory space. For example: mdw 0xF900_0000 32.

5. To test the DRAM:
● Use the mww command to write to the memory space: mww <address>

<data>. For example: mww 0x00001000 16.
● Then, use the mdw command to write to the memory space: mdw <address>

<data>. For example: mdw 0x00001000 16. If the memory space has
collapsed, the console shows all 0s.

Close Terminals

When you finish:
● Type exit in terminal 2 to close the telnet session.
● Type Ctrl+C in terminal 1 to close the OpenOCD session.

Important: OpenOCD cannot be running in Eclipse when you are using it in a terminal. If you try to run both
at the same time, the application will crash or hang. Always close the terminals when you are done flashing
the binary.

Reset the FPGA

Press the reset button on your development board:
● Trion® T120 BGA324 Development Board—SW2
● 钛金系列 Ti60 F225 Development Board—SW3

OpenOCD error code (-1073741515)
The OpenOCD debugger may fail with error code -1073741515 if your system
does not have the libusb0.dll installed. To fix this problem, install the DLL. This
issue only affects Windows systems.

OpenOCD Error: no device found
The FTDI driver included with the Sapphire SoC specifies the FTDI device VID
and PID, and board description. In some cases, an early revision of the 易灵思
development board may have a different name than the one given in the driver
file. If the board name does not match the name in the driver, OpenOCD will fail
with an error similar to the following:

Error: no device found
Error: unable to open ftdi device with vid 0403, pid 6010, description 'Trion T20
 Development
 Board', serial '*' at bus location '*'

To fix this problem, follow these steps with the development board attached to
the computer:

1. Open the Efinity Programmer.
2. Click the Refresh USB Targets button to display the board name in the USB

Target drop-down list.
3. Make note of the board name.
4. In a text editor, open the ftdi.cfg (Trion) or ftdi_ti.cfg (钛金系列) file in the /

bsp/efinix/EFXSapphireSoC/openocd directory.

www.elitestek.com 72

Sapphire RISC-V SoC Hardware and Software User Guide

5. Change the ftdi_device_desc setting to match your board name. For
example, use this code to change the name from Trion T20 Development
Board to Trion T20 Developer Board:

interface ftdi
ftdi_device_desc "Trion T20 Developer Board"
#ftdi_device_desc "Trion T20 Development Board"
ftdi_vid_pid 0x0403 0x6010

6. Save the file.
7. Debug as usual in OpenOCD.

OpenOCD Error: failed to reset FTDI device:
LIBUSB_ERROR_IO
This error is typically caused because you have the wrong Windows USB driver for
the development board. If you have the wrong driver, you will get an error similar
to:

Error: failed to reset FTDI device: LIBUSB_ERROR_IO
Error: unable to open ftdi device with vid 0403, pid 6010, description
'Trion T20 Development Board', serial '*' at bus location '*'

OpenOCD Error: target 'fpga_spinal.cpu0' init
failed
You may receive this error when trying to debug after creating your OpenOCD
debug configuration. The Eclipse Console gives an error message similar to:

Error cpuConfigFile C:RiscVsoc_Jadesoc_jade_swcpu0.yaml not found
Error: target 'fpga_spinal.cpu0' init failed

This error occurs because the path to the cpu0.yaml file is incorrect, specifically
the slashes for the directory separators. You should use:
● a single forward slash (/)
● 2 backslashes (\\)

For example, either of the following are good:

C:\\RiscV\\soc_Jade\\soc_jade_sw\\cpu0.yaml
C:/RiscV/soc_Jade/soc_jade_sw/cpu0.yaml

Eclipse Fails to Launch with Exit Code 13
The Eclipse software requires a 64-bit version of the Java JRE. If you use a 32-bit
version, when you try to launch Eclipse you will get an error that Java quit with
exit code 13.

If you are downloading the JRE using a web browser from www.java.com, it
defaults to getting the 32-bit version. Instead, go to https://www.java.com/en/
download/manual.jsp to download the 64-bit version.

Efinity® Debugger Crashes when using
OpenOCD

www.elitestek.com 73

Sapphire RISC-V SoC Hardware and Software User Guide

The Efinity® Debugger crashes if you try to use it for debugging while also using
OpenOCD. Both applications use the same USB connection to the development
board, and conflict if you use them at the same time. To avoid this issue:
● Do not use the two debuggers at the same time.
● Use an FTDI cable and a soft JTAG core for OpenOCD debugging. See Using a

Soft JTAG Core for Example Designs on page 58 for details.

Undefined Reference to 'cosf'
You may receive an error similar to this when using calculating square root, sine,
or cosine with floating-point numbers in your application. The Sapphire SoC does
not currently support floating point.

Exception in thread "main"
When you generate the SoC with a custom user application, you may receive
messages similar to the following when you compile your software application:

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: Index 29361152 out of bounds for
 length 1024
at spinal.lib.misc.HexTools$$anonfun$initRam$1.apply$mcVII
$sp(HexTools.scala:53)

This can happen when you have an SoC with external memory interface. The
default linker script targets the external memory region during application
compilation. You should compile your application to target on-chip RAM instead
by following these steps:

1. Open the file <project>/embedded_sw/<module>/software/standalone/
common/bsp.mk.

2. Change line 7 from

LDSCRIPT ?= ${BSP_PATH}/linker/default.ld

to

LDSCRIPT ?= ${BSP_PATH}/linker/default_i.ld

3. Recompile the application.

If these steps do not solve the issue, contact the Efinix support team via our
forum in the Support Center.

www.elitestek.com 74

Sapphire RISC-V SoC Hardware and Software User Guide

Chapter 15

API Reference
Contents:

● Control and Status Registers
● GPIO API Calls
● I2C API Calls
● I/O API Calls
● Core Local Interrupt Timer API Calls
● User Timer API Calls
● PLIC API Calls
● SPI API Calls
● SPI Flash Memory API Calls
● UART API Calls
● Handling Interrupts

The following sections describe the API for the code in the driver directory.

Control and Status Registers
csr_clear()

Usage csr_clear(csr, val)

Include driver/riscv.h

Description Clear a CSR.

csr_read()

Usage csr_read(csr)

Include driver/riscv.h

Description Read from a CSR.

Example csrr (t0, mepc)

csr_read_clear()

Usage csr_read_clear(csr, val)

Include driver/riscv.h

Description CSR read and clear bit.

csr_read_set()

Usage csr_read_set(csr, val)

Include driver/riscv.h

Description CSR read and set bit.

csr_set()

Usage csr_set(csr, val)

Include driver/riscv.h

Description CSR set bit.

www.elitestek.com 75

Sapphire RISC-V SoC Hardware and Software User Guide

csr_swap()

Usage csr_swap(csr, val)

Include driver/riscv.h

Description Swaps values in the CSR.

csr_write()

Usage csr_write(csr, val)

Include driver/riscv.h

Description Write to a CSR.

Example csrw (mepc, t0); // Write regfile[t0] in mepc

opcode_R()

Usage opcode_R(opcode, func3, func7, rs1, rs2)

Include driver/riscv.h

Description Define an opcode for the custom instruction.

Example #define tea_l(rs1, rs2) opcode_R(CUSTOM0, 0x00, 0x00, rs1, rs2)

GPIO API Calls
gpio_getFilteringHit()

Usage gpio_getFilteringHit(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register filter hit with a call back function.

Example
if(gpio_getFilteringHit(I2C_CTRL) == 1)
// Check filter hit value, bit [7] from slave address,
// read =’1’ write =’0’

gpio_getFilteringStatus()

Usage gpio_getFilteringStatus(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register filter hit with a call back function.

Example
if(gpio_getFilteringStatus (I2C_CTRL) == 1)
// Check filter hit status, bit [7] from slave address, read =’1’
 write =’0

gpio_getInput()

Usage gpio_getInput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Get input from a GPIO.

www.elitestek.com 76

Sapphire RISC-V SoC Hardware and Software User Guide

gpio_getInterruptFlag()

Usage gpio_getInterruptFlag(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register interrupt flag with a call back function.

Example
Int flag = gpio_getInterruptFlag(I2C_CTRL) & I2C_INTERRUPT_DROP;
// Get Drop interrupt flag from Interrupt register
//[2] I2C_INTERRUPT_TX_DATA
//[3] I2C_INTERRUPT_TX_ACK
//[7] I2C_INTERRUPT_DROP
//[16] I2C_INTERRUPT_CLOCK_GEN_BUSY
//[17] I2C_INTERRUPT_FILTER

gpio_getMasterStatus()

Usage gpio_getMasterStatus(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register master status with a call back function.

Example
int status = gpio_getMasterStatus(I2C_CTRL) & I2C_MASTER_BUSY;
// Get master busy status from status register
[0]I2C_MASTER_BUSY
[4]I2C_MASTER_START
[5]I2C_MASTER_STOP
[6]I2C_MASTER_DROP

gpio_getOutput()

Usage gpio_getOutput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Read the output pin.

gpio_getOutputEnable()

Usage gpio_getOutputEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Read GPIO output enable.

gpio_setOutput()

Usage gpio_setOutput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set GPIO as 1 or 0.

www.elitestek.com 77

Sapphire RISC-V SoC Hardware and Software User Guide

gpio_setOutputEnable()

Usage gpio_setOutputEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set GPIO as an output enable.

gpio_setInterruptRiseEnable()

Usage gpio_setInterruptRiseEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt on the rising edge of the GPIO.

gpio_setInterruptFallEnable()

Usage gpio_setInterruptFallEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt on the falling edge of the GPIO.

gpio_setInterruptHighEnable()

Usage gpio_setInterruptHighEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt when the GPIO is high.

gpio_setInterruptLowEnable()

Usage gpio_setInterruptLowEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt when the GPIO is low.

I2C API Calls
i2c_applyConfig()

Usage void i2c_applyConfig(u32 reg, I2c_Config *config)

Parameters [IN] reg struct of I2C setting value
[IN] config struct of I2C configuration

Include driver/i2c.h

Description Apply I2C configuration to register or for initial configuration.

www.elitestek.com 78

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_clearInterruptFlag()

Usage void i2c_clearInterruptFlag(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register

Include driver/i2c.h

Description Clear the I2C interrupt flag.

i2c_disableInterrupt()

Usage void i2c_disableInterrupt(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register:
[0] I2C_INTERRUPT_RX_DATA
[1] I2C_INTERRUPT_RX_ACK
[2] I2C_INTERRUPT_TX_DATA
[3] I2C_INTERRUPT_TX_ACK
[4] I2C_INTERRUPT_START
[5] I2C_INTERRUPT_RESTART
[6] I2C_INTERRUPT_END
[7] I2C_INTERRUPT_DROP
[16] I2C_INTERRUPT_CLOCK_GEN_BUSY
[17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Disable I2C interrupt.

Example
i2c_disableInterrupt(I2C_CTRL, I2C_INTERRUPT_TX_ACK);
// Enable I2C interrupt with interrupt TX Ack

i2c_enableInterrupt()

Usage void i2c_enableInterrupt(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register:
[0] I2C_INTERRUPT_RX_DATA
[1] I2C_INTERRUPT_RX_ACK
[2] I2C_INTERRUPT_TX_DATA
[3] I2C_INTERRUPT_TX_ACK
[4] I2C_INTERRUPT_START
[5] I2C_INTERRUPT_RESTART
[6] I2C_INTERRUPT_END
[7] I2C_INTERRUPT_DROP
[16] I2C_INTERRUPT_CLOCK_GEN_BUSY
[17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Enable I2C interrupt.

Example
i2c_enableInterrupt(I2C_CTRL, I2C_INTERRUPT_FILTER |
 I2C_INTERRUPT_DROP);
// Enable I2C interrupt with interrupt filter and drop

www.elitestek.com 79

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_filterEnable()

Usage void i2c_filterEnable(u32 reg, u32 filterId, u32 config)

Parameters [IN] reg struct of I2C setting value
[IN] filterID filter configuration ID number
[IN] config struct of I2C configuration

Include driver/i2c.h

Description Enable the filter configuration.

i2c_listenAck()

Usage void i2c_listenAck(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Listen acknowledge from the slave.

i2c_masterBusy()

Usage void i2c_masterBusy(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Get the I2C busy status.

i2c_masterStatus()

Usage int i2c_masterStatus(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Get the I2C status.

i2c_masterDrop()

Usage void i2c_masterDrop(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the drop state.

Example i2c_masterDrop(I2C_CTRL);

i2c_masterStart()

Usage void i2c_masterStart(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the start status.

i2c_masterStartBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Asserts a start condition.

www.elitestek.com 80

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_masterStop()

Usage void i2c_masterStop(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the stop status.

i2c_masterStopBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Asserts a stop condition.

i2c_masterStopWait()

Usage void i2c_masterStopWait(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description The stop condition is wait busy..

i2c_setFilterConfig()

Usage void i2c_setFilterConfig(u32 reg, u32 filterId, u32 config)

Parameters [IN] reg struct of I2C setting value
[IN] filterID filter configuration ID number
[IN] config struct of I2C configuration:
● [9:0] I2C slave address

● [14] I2C_FILTER_10BITS

● [15] I2C_FILTER_ENABLE

Include driver/i2c.h

Description Set the filter configuration.

Example
i2c_setFilterConfig(I2C_CTRL, 0, 0x30 | I2C_FILTER_ENABLE);
// Enable filter with ID=0 slave addr = 0x30 default 7 bit filter

i2c_txAck()

Usage void i2c_txAck(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Transmit acknowledge.

i2c_txAckBlocking()

Usage void i2c_txAckBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Assert an ACK on the SDA pin.

www.elitestek.com 81

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_txAckWait()

Usage void i2c_txAckWait(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Wait for an acknowledge to transmit.

i2c_txByte()

Usage void i2c_txByte(u32 reg, u8 byte)

Parameters [IN] reg struct of I2C register
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Transfers one byte to the I2C slave.

i2c_txByteRepeat()

Usage void i2c_txByteRepeat(u32 reg, u8 byte)

Parameters [IN] reg struct of I2C register
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Send a byte and then wait until it is fully transmited on the I2C bus.

i2c_txNack()

Usage void i2c_txNack(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Transfers a NACK.

i2c_txNackRepeat()

Usage void i2c_txNackRepeat(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Send a NACK and then wait until it is fully transmited on the I2C bus.

i2c_txNackBlocking()

Usage void i2c_ txNackBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Assert a NACK on the SDA pin.

i2c_rxAck()

Usage int i2c_rxAck(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 bit acknowledge

Include driver/i2c.h

Description Receive an acknowledge from the I2C slave.

www.elitestek.com 82

Sapphire RISC-V SoC Hardware and Software User Guide

i2c_rxData()

Usage unit32_t i2c_rxData(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 byte data from I2C slave

Include driver/i2c.h

Description Receive one byte data from I2C slave.

i2c_rxNack()

Usage int i2c_rxNack(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 bit no acknowledge

Include driver/i2c.h

Description Receive no acknowledge from the I2C slave.

www.elitestek.com 83

Sapphire RISC-V SoC Hardware and Software User Guide

I/O API Calls
read_u8()

Usage u8 read_u8(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 8 bits.

read_u16()

Usage u16 read_u16(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 16 bits.

read_u32()

Usage u32 read_u32(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 32 bits.

write_u8()

Usage void write_u8(u8 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 8 bits unsigned data to the specified address.

write_u16()

Usage void write_u16(u16 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 16 bits unsigned data to the specified address.

write_u32()

Usage void write_u32(u32 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 32 bits unsigned data to the specified address.

www.elitestek.com 84

Sapphire RISC-V SoC Hardware and Software User Guide

write_u32_ad()

Usage void write_u32_ad(u32 address, u32 data)

Include driver/io.h

Parameters [IN] address SoC address
[IN] data SoC address data

Description Write 32 bits unsigned data to the specified address.

Core Local Interrupt Timer API Calls
clint_setCmp()

Usage void clint_setCmp(u32 p, u64 cmp, u32 hart_id)

Include driver/clint.h

Parameters [IN] p timer interrupt
[IN] cmp timer compare register
[IN] hart_id hart ID

Description Set a timer value to trigger an interrupt.

clint_getTime()

Usage u64 clint_getTime(u32 p)

Include driver/clint.h

Parameters [IN] p timer interrupt

Returns [OUT] timer value

Description Gets the timer value.

clint_uDelay()

Usage u64 clint_uDelay(u32 usec, u32 hz, u32 reg)

Include driver/clint.h

Parameters [IN] usec microseconds
[IN] hz core frequency
[IN] reg timer interrupt

Description Use the timer to make a delay.

www.elitestek.com 85

Sapphire RISC-V SoC Hardware and Software User Guide

User Timer API Calls
prescaler_setValue()

Usage void prescaler_setValue(u32 reg, u32 value)

Include driver/prescaler.h

Parameters [IN] reg struct of user timer register
[IN] prescaler prescaler value

Description Set the user timer prescaler value.

timer_setConfig()

Usage void timer_setConfig(u32 reg, u32 value)

Include driver/timer.h

Parameters [IN] reg struct of user timer register
[IN] value user timer configuration value

Description Set the user timer configuration.

timer_setLimit()

Usage void timer_setLimit(u32 reg, u32 value)

Include driver/timer.h

Parameters [IN] reg struct of user timer register
[IN] value user timer configuration value

Description Set the limit value for the timer to generate an interrupt.

timer_getValue()

Usage void timer_getValue(u32 reg)

Include driver/timer.h

Parameters [IN] reg struct of user timer register

Returns Timer value

Description Get the timer value.

timer_clearValue()

Usage void timer_clearValue(u32 reg)

Include driver/timer.h

Parameters [IN] reg struct of user timer register

Description Clear the timer value and set it to 0.

www.elitestek.com 86

Sapphire RISC-V SoC Hardware and Software User Guide

PLIC API Calls
plic_set_priority()

Usage void plic_set_priority(u32 plic, u32 gateway, u32 priority)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] gateway interrupt type
[IN] priority interrupt priority

Description Set the interrupt priority.

plic_set_enable()

Usage void plic_set_enable(u32 plic, u32 target, u32 gateway, u32 enable)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] gateway interrupt type
[IN] enable

Description Set the interrupt enable.

plic_set_threshold()

Usage void plic_set_threshold(u32 plic, u32 target, u32 threshold)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] threshold enable = 1

Description Masks individual interrupt sources for the HART.

plic_claim()

Usage u32 plic_claim(u32 plic, u32 target)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number

Description Claim the PLIC interrupt

plic_release()

Usage void plic_release(u32 plic, u32 target, u32 gateway)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] gateway interrupt type

Description Release the PLIC interrupt.

SPI API Calls

www.elitestek.com 87

Sapphire RISC-V SoC Hardware and Software User Guide

spi_applyConfig()

Usage void spi_applyConfig(Spi_Reg *reg, Spi_Config *config)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] config struct of the SPI configuration

Description Applies the SPI configuration to to a register for initial configuration.

spi_cmdAvailability()

Usage spi_cmdAvailability(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Description Read the SPI command buffer.

spi_diselect()

Usage void spi_select(Spi_Reg *reg, uint32_t slaveId)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] slaveId ID for the slave

Description De-asserts the SPI select (SS) pin.

spi_read()

Usage uint8_t spi_write(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Returns [OUT] reg One byte of data

Description Receives one byte from the SPI slave.

spi_read32()

Usage uint32_t spi_write(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Returns [OUT] reg Data (up to 16 bits)

Description Receives up to 16 bits of data from the SPI slave.

spi_rspOccupancy()

Usage spi_rspOccupancy(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Description Read the occupancy buffer.

spi_select()

Usage void spi_select(Spi_Reg *reg, uint32_t slaveId)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] slaveId ID for the slave

Description Asserts the SPI select (SS) pin.

www.elitestek.com 88

Sapphire RISC-V SoC Hardware and Software User Guide

spi_write()

Usage void spi_write(Spi_Reg *reg, uint8_t data)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] data 8 bits of data to send out

Description Transfers one byte to the SPI slave.

spi_write32()

Usage void spi_write(Spi_Reg *reg, uint32_t data)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] data up to 16 bits of data to send out

Description Transfers up to 16 bits to the SPI slave.

spi_writeRead()

Usage uint8_t spi_writeRead(Spi_Reg *reg, uint8_t data)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] data 8 bits of data to send out

Returns [OUT] reg one byte of data

Description Transfers one byte to the SPI slave and receives one byte from the SPI slave.

spi_writeRead32()

Usage uint8_t spi_writeRead(Spi_Reg *reg, uint32_t data)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] data up to 16 bits of data to send out

Returns [OUT] reg Up to 16 bits of data

Description Transfers up to 16 bits of data to the SPI slave and receives up to 16 bits of data from
the SPI slave.

SPI Flash Memory API Calls
spiFlash_f2m_()

Usage void spiFlash_f2m_(Spi_Reg * spi, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] flashAddress flash device address
[IN] memoryAddress memory address
[IN] size programming address size

Description Copy data from the flash device to memory.

www.elitestek.com 89

Sapphire RISC-V SoC Hardware and Software User Guide

spiFlash_f2m()

Usage void spiFlash_f2m(Spi_Reg * spi, u32 cs, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select
[IN] flashAddress flash device address
[IN] memoryAddress memory address

Description Copy data from the flash device to memory with chip select control.

spiFlash_f2m_withGpioCs()

Usage void spiFlash_f2m_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio, u32 cs,
u32 flashAddress, u32 memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select
[IN] flashAddress flash device address
[IN] memoryAddress memory address
[IN] size programming address size

Description Flash device from the SPI master with GPIO chip select.

spiFlash_diselect()

Usage void spiFlash_diselect(Spi_Reg *spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description De-asserts the SPI flash device from the master chip select.

spiFlash_diselect_withGpioCs()

Usage void spiFlash_diselect_withGpioCs(Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description De-asserts the SPI flash device from the master with the GPIO chip select.

spiFlash_init_()

Usage void spiFlash_init_(Spi_Reg * spi)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register

Description Initialize the SPI reg struct.

spiFlash_init()

Usage void spiFlash_init(Spi_Reg * spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Initialize the SPI reg struct with chip select de-asserted.

www.elitestek.com 90

Sapphire RISC-V SoC Hardware and Software User Guide

spiFlash_init_withGpioCs()

Usage void spiFlash_init_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Initialize the SPI reg struct with GPIO chip select de-asserted.

spiFlash_read_id_()

Usage u8 spiFlash_read_id_(u32 spi)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register

Returns 8-bit SPI flash ID

Description Read the ID from the flash.

spiFlash_read_id()

Usage u8 spiFlash_read_id(u32 spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Returns 8-bit SPI flash ID

Description Read the ID from the flash with chip select.

spiFlash_select()

Usage void spiFlash_select(Spi_Reg *spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Select the SPI flash device.

spiFlash_select_withGpioCs()

Usage spiFlash_select_withGpioCs(Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Select the SPI flash device with the GPIO chip select.

spiFlash_software_reset()

Usage void spiFlash_software_reset(Spi_Reg * spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Reset the SPI flash.

www.elitestek.com 91

Sapphire RISC-V SoC Hardware and Software User Guide

spiFlash_wake_()

Usage void spiFlash_wake_(Spi_Reg * spi)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register

Description Release power down from the SPI master.

spiFlash_wake()

Usage void spiFlash_wake(Spi_Reg * spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Release power down from the SPI master with chip select.

spiFlash_wake_withGpioCs()

Usage void spiFlash_wake_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Release power down from the SPI master with the GPIO chip select.

www.elitestek.com 92

Sapphire RISC-V SoC Hardware and Software User Guide

UART API Calls
uart_applyConfig()

Usage char uart_applyConfig(Uart_Reg *reg, Uart_Config *config)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] config struct of the UART configuration

Description Applies the UART configuration to to a register for initial configuration.

uart_emptyInterruptEna()

Usage uart_emptyInterruptEna(u32 reg char ena)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] ena Enable interrupt

Description Enable the TX FIFO empty interrupt.

uart_NotemptyInterruptEna()

Usage uart_NotemptyInterruptEna(u32 reg char ena)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] ena Enable interrupt

Description Enable the RX FIFO not empty interrupt.

uart_read()

Usage char uart_read(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Returns [OUT] reg character that is read

Description Reads a character from the UART slave.

uart_readOccupancy()

Usage uint32_t uart_readOccupancy(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Description Read the number of bytes in the RX FIFO.

uart_status_read()

Usage uart_status_read(u32 reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Returns [OUT] 32-bit status register from the UART

Description Read the UART status.

www.elitestek.com 93

Sapphire RISC-V SoC Hardware and Software User Guide

uart_status_write()

Usage uart_status_write(u32 reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] data input data for the UART status.

Returns [OUT] 32-bit status register from the UART

Description Write the UART status.

uart_write()

Usage void uart_write(Uart_Reg *reg, char data)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] data write a character

Description Write a character to the UART.

uart_writeHex()

Usage void uart_writeHex(u32 reg, int value)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] value number to send as UART character

Description Convert a number to a character and send it to the UART in hexadecimal.

uart_writeStr()

Usage void uart_writeStr(Uart_Reg *reg, char* str)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] str string to write

Description Write a string to the UART TX.

uart_writeAvailability()

Usage uart_writeAvailability(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Description UART read/write FIFO.

www.elitestek.com 94

Sapphire RISC-V SoC Hardware and Software User Guide

Handling Interrupts
There are two kinds of interrupts, trap vectors and PLIC interrupts, and you
handle them using different methods.

Figure 18: Types of Interrupts

Trap
Vector

Exceptions

Clint Timer

Machine External Interrupt

PLIC

I2C Interrupt

SPI Interrupt

UART Interrupt

User Timer Interrupt

External Interrupt

Sapphire
SoC

Trap

Machine Trap
Cause (mcause)

Interrupt Claim Registers

mcause
Register

Interrupt ID

Other Interrupt

www.elitestek.com 95

Sapphire RISC-V SoC Hardware and Software User Guide

Trap Vectors

Trap vectors trap interrupts or exceptions from the system. Read the Machine
Cause Register (mcause) to identify which type of interrupt or exception fthe
system is generating. Refer to "Machine Cause Register (mcause): 0x342" in the
data sheet for your SoC for a list of the exceptions and interrupts used for trap
vectors. The following flow chart explains how to handle trap vectors.

For CAUSE_MACHINE_EXTERNAL, it will call the subroutine to process the PLIC
level interrupts.

Figure 19: Handling Trap Vectors

Call Trap

Read mcause

Is Interrupt? Call Exceptions()
yes

no

CAUSE_CLINT_TIMER? Call Timer()
yes

Call ExternalInterrupt()
yes

no

Call Exceptions() or
handle by user

no

CAUSE_MACHINE_EXTERNAL?

PLIC Interrupts

The PLIC collects external interrupts and is also used for
CAUSE_MACHINE_EXTERNAL cases. Read the interrupt claim registers (PLIC claim)
to identify the source of the external interrupt. Refer to Address Map on page 43
for a list of the interrupt IDs.

Note: For the Sapphire SoC, the interrupt IDs are user configurable. Refer to the interrupt IDs that you set in
the IP Manager for each peripheral. The Address Map shows the default values.

The following flow chart shows how the PLIC handles interrupts.The PLIC
identifies the interrupt ID and processes the corresponding interrupts.

www.elitestek.com 96

Sapphire RISC-V SoC Hardware and Software User Guide

Figure 20: Handling PLIC Interrupts

Call ExternalInterrupt()

Read PLIC Claim

Is Interrupt
Claimed?

Call I2C Interrupt()

no

yes

PLIC_SYSTEM_UART_INTERRUPT? Call UART Interrupt()
yes

Call SPI Interrupt()
yes

no

Call Exceptions()

no

PLIC_SYSTEM_SPI_INTERRUPT?

PLIC_SYSTEM_I2C_INTERRUPT? yes

no

Call Other PLIC Interrupt()
yes

no

Other PLIC Interrupt?

Release
Claimed Interrupt

Call User Timer Interrupt()
yes

no

www.elitestek.com 97

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Re-Generate the Memory
Initialization Files Manually

With the Efinity software v2022.1 and higher, you do not need to re-generate
these files manually. These instructions are for reference if you are using an earlier
software version.

To re-generate the memory initialization files manually using the binGen.py
helper script. You find this script in the <project>/embedded_sw/<SoC
module>/tool directory.

Windows:

Open a command prompt and type these commands:

${EFINITY_HOME}/bin/setup.bat
python3 binGen.py -b bootloader.bin -s <RAM size> -f <FPU>

Linux:

Open a terminal and type these commands:

source ${EFINITY_HOME}/bin/setup.sh
python3 binGen.py -b bootloader.bin -s <RAM size> -f <FPU>

where:
● <RAM size> is the on-chip RAM size you want to use.
● <FPU> indicates whether the floating-point unit is enabled for the SoC. 1:

floating-point is enabled, 0: disabled.

This command generates the new memory initialization files. Copy these files into
the same directory as your project .xml file, replacing the existing files.

Compile your design.

www.elitestek.com 98

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Import the Debug Configuration

With the Efinity software v2022.1 and higher, you do not need to import the
debug configuration. These instructions are for reference if you are using an
earlier software version.

To simplify the debugging steps, the Sapphire SoC includes debug configurations
that you import. There are several configuration files, depending on which board
you use.

Table 25: Debug Configurations

Debug
Configuration

Use for

default Debugging software on Trion® development boards.

default_ti Debugging software on 钛金系列 development boards.

default_softTap Debugging software on Trion or 钛金系列 development boards with the soft JTAG TAP
interface. For example, you would need to use the soft TAP if you want to use the OpenOCD
debugger and the Efinity® Debugger at the same time. (See Using a Soft JTAG Core for
Example Designs on page 58.)

To import a debug configuration and use it to launch a debug session:

1. Launch Eclipse by running the run_eclipse.bat file (Windows) or
run_eclipse.sh (Linux).

2. Select a workspace (if you have not set one as a default).
3. Open the axiDemo project or select it under C/C++ Projects.
4. Right-click the axiDemo project name and choose Import.
5. In the Import dialog box, choose Run/Debug > Launch Configurations.
6. Click Next. The Import Launch Configurations dialog box opens.
7. Browse to the following directory and click OK:

Option Description

Windows embedded_sw\<SoC module>\config

Linux embedded_sw/<SoC module>/config_linux

8. Check the box next to config (Windows) or config_linux (Linux).
9. Click Finish.
10.Right-click the axiDemo project name and choose Debug As > Debug

Configurations.
11.Enter axiDemo in the Project box.
12.Enter build\axiDemo.elf in the C/C++ Application box.
13.Windows only: you need to change the path to the cpu0.yaml file:

a. Click the Debugger tab.
b. In the Config options box, change ${workspace_loc} to the full path to

the <SoC module> directory.

Note: For the cpu0.yaml path, make sure to use \\ as the directory separator because
the first slash escapes the second one. For example, use:
c:\\Efinity\\2021.2\\project\\<project name>\\embedded_sw\\<SoC module>\
\cpu0.yaml

14.Click Debug.

Note: If Eclipse prompts you to switch to the Debug Perspective, click Switch.

www.elitestek.com 99

Sapphire RISC-V SoC Hardware and Software User Guide

Appendix: Copy a User Binary to the Flash
Device (2 Terminals)

To boot from a flash device, you need to copy the binary to the device. These
instructions describe how to use two command prompts or terminals to flash the
user binary file.

Note: If you want to store the binary in the same flash device that holds the FPGA bitstream, refer to Copy a
User Binary to Flash (Efinity Programmer) on page 41 instead.

You use two command prompts or terminals:
● The first terminal opens an OpenOCD connection to the SoC.
● The second connects to the first terminal to write to the flash.

Important: If you are using the OpenOCD debugger in Eclipse, terminate any debug processes before
attempting to flash the memory.

Set Up Terminal 1

1. Open a Windows command prompt or Linux shell.
2. Change to SDK_Windows or SDK_Ubuntu.
3. Execute the setup.bat (Windows) or setup.sh (Linux) script.
4. Change to the directory that has the cpu0.yaml file.
5. Type the following commands to set up the OpenOCD server:

Windows:

openocd.exe -f bsp\efinix\EfxSapphireSoc\openocd\ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxSapphireSoc\openocd\flash.cfg

Linux:

openocd -f bsp/efinix/EfxSapphireSoc/openocd/ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxSapphireSoc/openocd/flash.cfg

The OpenOCD server connects and begins listening on port 4444.

Set Up Terminal 2

1. Open a second command prompt or shell.
2. Enable telnet if it is not turned on. Turn on telnet (Windows)
3. Open a telnet local host on port 4444 with the command telnet localhost

4444.
4. In the OpenOCD shell or command prompt, use the following command to

flash the user binary file:

flash write_image erase unlock <path>/<filename>.bin 0x380000

Where <path> is the full, absolute path to the .bin file.

Note: For Windows, use \\ as the directory separators.

Close Terminals

When you finish:
● Type exit in terminal 2 to close the telnet session.
● Type Ctrl+C in terminal 1 to close the OpenOCD session.

www.elitestek.com 100

Sapphire RISC-V SoC Hardware and Software User Guide

Important: OpenOCD cannot be running in Eclipse when you are using it in a terminal. If you try to run both
at the same time, the application will crash or hang. Always close the terminals when you are done flashing
the binary.

Reset the FPGA

Press the reset button on your development board:
● Trion® T120 BGA324 Development Board—SW2
● 钛金系列 Ti60 F225 Development Board—SW3

www.elitestek.com 101

Sapphire RISC-V SoC Hardware and Software User Guide

Revision History

Table 26: Revision History

Date Version Description

November 2022 4.2 Corrected boot sequence cases A and B. (DOC-932)

September 2022 4.1 Updates for the Ti180 M484 development board.

September 2022 4.0 Updated the instructions for debugging with OpenOCD. You now use launch
scripts.
Added information on the possible boot sequence scenarios.
Enhanced the information on the address map.
Added description for debugging with multiple cores.
Added new SPI API functions.
Added instructions on migrating from Ruby, Jade, and Opal to Sapphire.
Updated IP Manager configuration options.
Updated instructions on launching Eclipse.
Updated Installing USB drivers topics.

June 2022 3.2 When finding the COM port in Windows, look for the first COM port listed
under Ports (COM & LPT). (DOC-811)
The VexRiscv core used in the Sapphire SoC has six pipeline stages.

March 2022 3.1 Fixed typo in Connect the FTDI Cable topic. (DOC-731)

December 2021 3.0 Updated the SDK version numbers.
Updated the IP Manager Configuration Wizard description for new
configuration options.
Added instructions for using the Ti60 F225 Development Board and example
design.
Updated instructions for Eclipse global environment variables.
Explained new Efinity Programmer feature for programming a flash device
with a combined user bitstream and application binary.
Updated register map.
Updated the API Reference for new driver support.

October 2021 2.1 Corrected incomplete instructions for copying a user binary to flash.
(DOC-576)

October 2021 2.0 IP Manager options changed for the updated Sapphire wizard. (DOC-544)
Updated the address map. (DOC-544)
Updated the example design description for the new features in the design.
(DOC-544)
New simulation instructions. (DOC-544)
New instructions for changing the bootloader RAM size. (DOC-544)
Changed the EfxApb3Example, EfxAxi4Example, and userInterruptDemo
example descriptions. (DOC-544)
Changed the TX pin number for the instructions on setting up a USB-to-
UART module. (DOC-544)
When using the Soft Debug Tap option, the IP Manager connects the pins
for you. (DOC-544)
Described the pins needed to connect an FTDI cable to the
Trion® T120 BGA324 Development Board when using the Soft Debug Tap
option. (DOC-544)

August 2021 1.1 Corrected typo in example design name in topics describing Eclipse and
OpenOCD (EfxAxi4Example instead of EfxAxiExample). (DOC-517)

July 2021 1.0 Initial release.

www.elitestek.com 102

	Contents
	Introduction
	VexRiscv RISC-V Core
	Required Software
	Required Hardware

	1. Install Software and SoC
	Install the Efinity® Software
	Install the RISC-V SDK
	Install the Java JRE

	2. IP Manager
	Customizing the Sapphire SoC
	Modify the Bootloader

	3. Program the Board with the Sapphire RTL Design
	About the Example Design
	Enable the On-Board 10 MHz Oscillator (T120 BGA324 Board)
	Enable the LPDDR4x Memory (Ti180 M484 Board)
	Installing USB Drivers
	Program the Development Board

	4. Simulate
	5. Launch Eclipse
	Set Global Environment Variables

	6. Create and Build a Software Project
	Create a New Project
	Import Project Settings (Optional)
	Enable Debugging
	Build

	7. Debug with the OpenOCD Debugger
	Launch the Debug Script
	Debug
	Debug - Multiple Cores

	8. Boot Sequence
	Boot Sequence: Case A
	Boot Sequence: Case B
	Boot Sequence: Case C
	Booting Multiple Cores

	9. Create Your Own RTL Design
	Target another FPGA
	Target another 易灵思 Board
	Target Your Own Board
	Create a Custom AXI4 Slave Peripheral
	Create a Custom APB3 Peripheral
	Use another DDR DRAM Module (Trion Only)
	Use the I2C Interface for DDR Calibration
	Remove Unused Peripherals from the RTL Design

	10. Create Your Own Software
	Deploying an Application Binary
	Boot from a Flash Device
	Boot from the OpenOCD Debugger
	Copy a User Binary to Flash (Efinity Programmer)

	About the Board Specific Package
	Address Map
	Example Software
	Axi4Demo Design
	apb3Demo
	compatibilityDemo
	coreTimerInterruptDemo
	coremark
	customInstructionDemo
	dhrystone Example
	fpuDemo
	gpioDemo
	i2cDemo Example
	i2cSlaveDemo Design
	memTest Example
	nestedInterruptDemo
	openocdServer
	smpDemo
	spiReadFlashDemo Example
	spiWriteFlashDemo Example
	spiDemo Example
	uartEchoDemo
	UartInterruptDemo Example
	userInterruptDemo Example
	userTimerDemo
	FreeRTOS Examples
	freertosUartInterruptDemo Example

	11. Using a UART Module
	Using the On-board UART ()
	Set Up a USB-to-UART Module (Trion)
	Open a Terminal
	Enable Telnet on Windows

	12. Using a Soft JTAG Core for Example Designs
	Connect the FTDI Cable

	13. Migrating to the Sapphire SoC
	Migrating to the Sapphire SoC v2.0 from a Previous Version
	Migrating Ruby, Jade, and Opal to the Sapphire SoC

	14. Troubleshooting
	Error 0x80010135: Path too long (Windows)
	OpenOCD Error: timed out while waiting for target halted
	Memory Test
	OpenOCD error code (-1073741515)
	OpenOCD Error: no device found
	OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
	OpenOCD Error: target 'fpga_spinal.cpu0' init failed
	Eclipse Fails to Launch with Exit Code 13
	Efinity® Debugger Crashes when using OpenOCD
	Undefined Reference to 'cosf'
	Exception in thread "main"

	15. API Reference
	Control and Status Registers
	GPIO API Calls
	I2C API Calls
	I/O API Calls
	Core Local Interrupt Timer API Calls
	User Timer API Calls
	PLIC API Calls
	SPI API Calls
	SPI Flash Memory API Calls
	UART API Calls
	Handling Interrupts

	Appendix: Re-Generate the Memory Initialization Files Manually
	Appendix: Import the Debug Configuration
	Appendix: Copy a User Binary to the Flash Device (2 Terminals)
	Revision History

