
Ruby RISC-V SoC Hardware
and Software User Guide

 All other trademarks and service marks are the property of their respective owners. All specifications subject to change withoutnotice.

Copyright © 2021. All rights reserved. 易灵思, the 易灵思 logo, the 钛金系列 logo, Quantum, Trion, and Efinity are trademarks of 易灵思®.

www.elitestek.com
December 2021
UG-RISCV-RUBY-v2.4

Ruby RISC-V SoC Hardware and Software User Guide

Contents
Introduction...iv

VexRiscv RISC-V Core... iv
Required Software... v
Required Hardware...vi

Chapter 1: Install Software and SoC... 7
Install the Efinity® Software.. 7

Use another DDR DRAM Module (Trion Only)... 28
Use the I2C Interface for a Peripheral instead of DDR Calibration...28

Create a Custom APB3

Peripheral..28

Debug... 24
Import the Debug Configuration..23

Chapter 7: Debug with the OpenOCD Debugger.. 23

Build.. 22
Enable Debugging..21
Import Project Settings (Optional).. 20
Create a New Project..20

Chapter 6: Create and Build a Software Project... 20

Set Global Environment Variables.. 18
Chapter 5: Launch Eclipse... 18

Chapter 4: Simulate... 17

Program the Development Board.. 16
Installing USB Drivers... 14
Enable the On-Board 10 MHz Oscillator... 14
About the Example Design... 13

Chapter 3: Program the Board with the Ruby RTL Design... 13

Modify the Bootloader... 12
Customizing the Ruby SoC..11

Chapter 2: IP Manager...9

Install the Java JRE... 8
Install the RISC-V SDK.. 7

www.elitestek.com

blinkAndEcho Example...37
Example Software..36
Address Map..35
About the Board Specific Package...34

Copy a User Binary to the Flash Device (2 Terminals)... 32
Copy a User Binary to Flash (Efinity Programmer)..31
Boot from the OpenOCD Debugger... 31
Boot from a Flash Device...30

Deploying an Application Binary..30
Chapter 9: Create Your Own Software..30

Remove Unused Peripherals from the RTL Design.. 29

Create a Custom AXI4 Slave Peripheral.. 28
Target Your Own Board..27
Update the FTDI Driver for another 易灵思Board..26
Target another FPGA.. 26

Chapter 8: Create Your Own RTL Design.. 26

Eclipse Fails to Launch with Exit Code 13...51
Efinity® Debugger Crashes when using OpenOCD...52
Undefined Reference to 'cosf'...52

Chapter 13: API Reference.. 53
Control and Status Registers...53
GPIO API Calls...54
I2C API Calls...57
I/O API Calls...62
Machine Timer API Calls.. 63
PLIC API Calls.. 64
SPI API Calls...65
SPI Flash Memory API Calls...66
UART API Calls...69
Handling Interrupts... 71

Revision History...74

www.elitestek.com

OpenOCD Error: target 'fpga_spinal.cpu0' init failed... 51
OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO.. 51
OpenOCD Error: no device found...50
OpenOCD error code (-1073741515)... 50
Memory Test...49
OpenOCD Error: timed out while waiting for target halted... 48
Error 0x80010135: Path too long (Windows)..48

Chapter 12: Troubleshooting...48

Connect the FTDI Cable.. 47
Modify the Interface Design.. 45
Enable Soft JTAG Support for the Example Design.. 45

Chapter 11: Using a Soft JTAG Core for Example Designs...45

Enable Telnet on Windows..44
Open a Terminal..44
Set Up a USB-to-UART Module (Trion).. 43
Using the On-board UART (钛金系列).. 42

Chapter 10: Using a UART Module... 42

writeFlash Example..41
userInterruptDemo Example..41
UartInterruptDemo Example.. 40
timerAndGpioInterruptDemo Example.. 40
spiDemo Example... 40
readFlash Example.. 39
memTest Example... 39
i2cSlaveDemo Design... 39
i2cDemo Example... 39
freertosUartInterruptDemo Example...39
FreeRTOS Examples.. 38
EfxApb3Example..38
axiInterruptDemo Design... 37
EfxAxi4Example Design.. 37
dhrystone Example..37

Ruby RISC-V SoC Hardware and Software User Guide

This user guide describes how to use the Ruby SoC that is provided with the Efinity® v2020.2
or higher. Previous versions of the SoC were available as downloads in the Support Center.
Although the functionality of the SoC is essentially the same, the IP Manager allows you to
set parameters to customize the Ruby SoC, and the resulting directory structure is different.

Figure 1: Designing Hardware and Software for the Ruby RISC-V SoC

FPGA

RTL Design
RISC-V SoC

Eclipse IDE

GCC Toolchain

OpenOCD

Windows
Build

Tools (1)

Java JRE

1. Windows build tools required on Windows platforms only.

Efinity
Software

Create Hardware
(RTL) DesignCreate Software Code (C/C++)

Software

Create your RTL
design in the Efinity
software and then
program it into the
FPGA.

Write your C/C++
code using the
Eclipse IDE and
then copy it to the
flash memory.

Learn more: Refer to the Ruby RISC-V SoC Data Sheet for detailed specifications on the SoC.

VexRiscv RISC-V Core
The Ruby SoC is based on the VexRiscv core created by Charles Papon. The VexRiscv core
is a 32-bit CPU using the ISA RISCV32I with M and C extensions and has five pipeline stages
(fetch, decode, execute, memory, and writeback).

In the Ruby SoC, the VexRiscv core supports the AXI4 and APB3 bus interfaces, and has
instruction and data caches.

iv

 software based on example projects, and use the API.
• Set up the software development environment using an example project, create your own

 易灵思® development board, and how to extend the example for your own application.
• Build RTL designs using the Ruby RISC-V SoC using an example design targeting an

易灵思 provides a soft RISC-V SoC, called Ruby, that you can implement in Trion® or

Introduction

Ruby RISC-V SoC Hardware and Software User Guide

www.elitestek.com

钛金系列 FPGAs. This user guide describes how to:

supported in future Efinity releases.
use the Ruby SoC with the Efinity software v2021.2 and lower. However, the Ruby SoC will not be
Therefore, 易灵思 recommends that you use the Sapphire SoC for all new designs. You can continue to
it with the Sapphire SoC. You cannot migrate automatically from the Ruby SoC to the Sapphire SoC.
Important: 易灵思 will be obsoleting the Ruby SoC in an upcoming Efinity software release and replacing

(1) https://www.businesswire.com/news/home/20181206005747/en/RISC-V-SoftCPU-Contest-Winners-Demonstrate-
Cutting-Edge-RISC-V

v

http://jdk.java.net/16/ (OpenJDK 16)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
https://www.java.com/en/download/manual.jsp (Java 8 official release)
Version: 8 Update 241
Open-source Java 64-bit runtime environment; required for Eclipse.

Java JRE
Disk space required: 4.99 MB
Version: 4.2.1-2-win32-x64
specific package helps to manage build projects and includes GNU make.
GNU MCU Eclipse Windows Build Tool (Windows Only)—This open-source Windows-

Disk space required: 9.4 MB (Windows), 7.4 MB (Linux)
Version: 20200421
that includes the VexRiscv 32-bit RISC-V processor.
OpenOCD are available. The 易灵思 RISC-V flow requires a custom version of OpenOCD
includes configuration files for many debug adapters, chips, and boards. Many versions of
OpenOCD Debugger—The open-source Open On-Chip Debugger (OpenOCD) software

Disk space required: 1.53 GB (Windows), 1.5 GB (Linux)
Version: 8.3.0-2.3
Project.
xPack GNU RISC-V Embedded GCC—Open-source, prebuilt toolchain from the xPack

Disk space required: 433 MB (Windows), 433 MB (Linux)
Version: 2020-09 (4.17.0)
applications for ARM and RISC-V cores.
extend and customize its functionality. The GNU MCU Eclipse plug-in lets you develop
Eclipse MCU—Open-source Java-based development environment that uses plug-ins to

RISC-V SDK
Version: 2020.2 or higher
interface, and command-line scripting support.
FPGAs. The software provides a complete RTL-to-bitstream flow, simple, easy to use GUI

Efinity® Software
single download in the Support Center for Windows and Ubuntu operating systems.
To write software for the Ruby SoC, you need the following tools. The SDK is available as a

Required Software

The VexRiscv core won first place in the RISC-V SoftCPU contest in 2018.(1)

Ruby RISC-V SoC Hardware and Software User Guide

www.elitestek.com

易灵思® development environment for creating RTL designs targeting Trion® or 钛金系列

viwww.elitestek.com

 debugger and Efinity® Debugger simultaneously
• (Optional) FTDI chip cable, C232HM-DDHSL-0, if you want to use the OpenOCD

 Trion® T120 BGA324 Development Board(2)
• (Optional) USB to UART converter module for the
• Computer or laptop
• Micro-USB cable
• 5 or 12 V power cable
• Trion® T120 BGA324 Development Board or 钛金系列 Ti60 F225 Development Board

Required Hardware

Ruby RISC-V SoC Hardware and Software User Guide

page 42 for more information.
See Set Up a USB-to-UART Module (Trion) on page 43 and Using the On-board UART (钛金系列) on
Note: Some of the software examples provided with the SoC use a UART terminal to display messages.

module.

separate(2) The 钛金系列 Ti60 F225 Development Board had an on-board USB-to-UART converter and does not require a

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 1

Install Software and SoC
Contents:

• Install the Efinity Software
• Install the RISC-V SDK
• Install the Java JRE

Install the Efinity® Software
If you have not already done so, download the Efinity® software from the Support Center
and install it. For installation instructions, refer to the Efinity Software Installation User
Guide.

Warning: Do not use spaces or non-English characters in the Efinity path.

Install the RISC-V SDK
To install the SDK:

1. Download the file riscv_sdk_windows-v<version>.zip or riscv_sdk_ubuntu-
v<version>.zip from the Support Center.

2. Create a directory for the SDK, such as c:\riscv-sdk (Windows) or home/my_name/
riscv-sdk (Linux).

3. Unzip the file into the directory you created. The complete SDK is distributed as
compressed files. You do not need to run an installer.

Windows directory structure:

• SDK_Windows
— eclipse—Eclipse application.
— GNU MCU Eclipse—Windows build tools.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-1.1_windows—GCC compiler.
— run_eclipse.bat—Batch file that sets variables and launches Eclipse.
— setup.bat—Batch file to set variables for running OpenOCD on the command line to

flash the binary.

Ubuntu directory structure:

• SDK_Ubuntu<version>
— eclipse—Eclipse application.
— openocd—OpenOCD debugger.
— riscv-xpack-toolchain_8.3.0-1.1_linux—GCC compiler.
— run_eclipse.sh—Shell file that sets variables and launches Eclipse.
— setup.sh—Shell file to set variables for running OpenOCD on the command line to

flash the binary.

7www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Install the Java JRE
To install the JRE:

1. Download the 64-bit version of the JRE or JDK for your operating system from
https://www.java.com/en/download/manual.jsp (Java 8 official release)
https://developers.redhat.com/products/openjdk/download (OpenJDK 8 or 11)
http://jdk.java.net/16/ (OpenJDK 16)

2. Follow the installation instructions on the web site to install the JRE.

Note: You need a 64-bit version of the Java JRE. If you use a 32-bit version, when you try to launch Eclipse
you will get an error that Java quit with exit code 13.

8www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 2

IP Manager
Contents:

• Customizing the Ruby SoC
• Modify the Bootloader

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Enter the module name in the Module Name box.3.
Choose an IP core and click Next. The IP Configuration wizard opens.2.
Open the IP Catalog.1.

The following steps explain how to customize an IP core with the IP Configuration wizard.

Generating Ruby SoC with the IP Manager
• IP Editor—Helps you manage IP, add IP, and import IP into your project.

 review the IP core settings, and generate the custom variation.
• IP Configuration—Wizard to customize IP core parameters, select IP core deliverables,

 toolbar button or using Tools > Open IP Catalog.
• IP Catalog—Provides a catalog of IP cores you can select. Open the IP Catalog using the
The IP Manager consists of:

core with different parameters, or the same IP core for different projects.
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
generate an example design targeting an 易灵思 development board and/or a testbench. This
ensure that your selections are valid. When you generate the IP core, you can optionally
易灵思® IP cores. The IP Manager performs validation checks on the parameters you set to
The Efinity® IP Manager is an interactive wizard that helps you customize and generate

add it to your project.
to download and install it separately. You use the IP Manager to configure the Ruby SoC and
Starting with v2020.2, the Ruby SoC is delivered with the Efinity® software; you do not need

Summary tab shows the generation status.
In the Review configuration generation dialog box, click Generate. The Console in the 8.
Click Generate to generate the IP core and other selected deliverables.7.
(Optional) In the Summary tab, review your selections.6.

(Optional) In the Deliverables tab, specify whether to generate an IP core example5.
on the options, refer to the IP core's user guide or on-line help.
Customize the IP core using the options shown in the wizard. For detailed information 4.

Note: You cannot generate the core without a module name.

www.elitestek.com 9

by default.
also optionally generate embedded software example code. These options are turned on
design targeting a 易n 灵思 ® development board and/or testbench. For SoCs, you can

Ruby RISC-V SoC Hardware and Software User Guide

Generated RTL Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

Note: Refer to the IP Manager chapter of the Efinity Software User Guide for more information about the
Efinity IP Manager.

Generated Software Code
If you choose to output embedded software, the IP Manager saves it into the <project>/
embedded_sw/<SoC module> directory.
• bsp—Board specific package.
• config—Has the Eclipse project settings file and OpenOCD debug configuration settings

files for Windows.
• config_linux—Has the Eclipse project settings file and OpenOCD debug configuration

settings files for Linux.
• software—Software examples.
• tool—Helper scripts.
• cpu0.yaml—CPU file for debugging.

Instantiating the SoC

The IP Manager creates these template files in the <project>/ip/<module name> directory:
• <module name>.v_tmpl.v is the Verilog HDL module.
• <module name>.v_tmpl.vhd is the VHDL component declaration and instantiation

template.

To use the IP, copy and paste the code from the template file into your design and update the
signal names to instantiate the IP.

Important: When you generate the IP, the software automatically adds the module file (<module
name>.v) to your project and lists it in the IP folder in the Project pane. Do not add the <module name>.v
file manually (for example, by adding it using the Project Editor); otherwise the Efinity® software will issue
errors during compilation.

IP Manager adds generated
IP to the IP folder (and

your project) automatically

Do not manually add
IP to the Design folder

10www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Customizing the Ruby SoC
The core has parameters so you can customize its function. You set the parameters in the
General tab of the core's IP Configuration window.

Table 1: Ruby SoC Parameters

Parameter Options Description

SoC Operating
Frequency (MHz)

20 - 350 Enter the frequency in MHz.
For the example design, if you change the frequency, you need
to manually change the PLL setting and SDC timing constraint for
io_systemClk to match the new frequency.
Default: 100

SoC On-Chip Ram
Size

4KB, 8KB, 16KB,
32KB, 64KB, 128KB,

256KB, 512KB

The size of the on-chip block RAM for the SoC.
Default: 4KB

Enable Soft JTAG
TAP

True, False Choose whether you want to include a soft debug TAP for
debugging.
False: Default. The SoC uses the JTAG User TAP interface block to
communicate with the OpenOCD debugger.
True: The SoC has a soft JTAG interface to communicate with the
OpenOCD debugger. You need to use this setting for T8 BGA49
or BGA81 designs or if you want to use the soft JTAG interface
instead of the JTAG User TAP. After enabling the soft JTAG TAP,
you need to manually assign the pins with the Interface Designer.

11

 Click

OK

and then compile.5.
 Choose

TIMING_1.4.

 Double-click the

Value

cell for

--optimization_level.3.
 Click the

Place and Route

tab.2.

.

Open

the

Project

Editor.1

www.elitestek.com

TIMING_1 place and route optimization. To set this option:
Important: When running the SoC at high frequencies, 易灵思 recommends that you use the

Ruby RISC-V SoC Hardware and Software User Guide

Modify the Bootloader
When you generate the Ruby SoC, the IP Manager creates a pre-built bootloader .bin to
transfer 124 KB of data from the SPI flash to the external memory. If you want to create a
custom bootloader, use the following instructions.

Note: You need the embedded software example code to make these changes; if you have not already
done so, generate it.

Modify the Bootloader Software
First you need to modify the bootloader code:

1. Open the bootloaderConfig.h file in the embedded_sw/<SoC module>/bsp/efinix/
EfxRubySoc/app directory.

2. Change the #define USER_SOFTWARE_SIZE parameter for the new on-chip RAM
size and save.

3. In Eclipse, create a new project from the makefile in the embedded_sw/<SoC
module>/software/standalone/bootloader directory and compile it.

Re-Generate the Memory Initialization Files
Next, you need to re-generate the memory initialization files using the binGen.py helper
script. You find this script in the <project>/embedded_sw/<SoC module>/tool
directory. Use the command:

python binGen.py -b bootloader.bin -c rubysoc -t <TAP> -s <RAM size>

where:
• <TAP> is hard or soft, depending on whether you are using the soft JTAG TAP.
• <RAM size> is the on-chip RAM size you want to use.

This command generates the new memory initialization files. Copy these files into the same
directory as your project .xml file, replacing the existing files.

Compile your design.

12www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 3

Program the Board with the Ruby RTL Design
Contents:

• About the Example Design
• Enable the On-Board 10 MHz Oscillator
• Installing USB Drivers
• Program the Development Board

Memory
Checker

Control
Logic

AXI4
Master

APB3
Slave

Debug

RISC-V
CPU

AXI3
Memory

Controller
Memory
Module

T120 F324 FPGA or Ti60 F225 FPGA

RISC-V SoC

JTAG

PLL

GPIO

UART

memoryCheckerDone

memoryCheckerPass

apb3LED

FTDI JTAG TAP

pll_refclk

LED

UART

13

Figure 2: Example Design Block Diagram

• Enable Soft JTAG TAP is false
• 4 KB RAM size
• 100 MHz frequency
The Ruby SoC is configured for:

The example software blinks an LED and displays messages on a UART terminal.

 module.

 DRAM module.

• For the Trion® T120 BGA324 Development Board, the design uses the board's LPDDR3

development board's memory module using the AXI interface:
This example uses a simple dual-port RAM module to write to and read from the

design files in the T120F324_devkit directory.
This example targets the Trion® T120 BGA324 Development Kit. You can access the RTL

About the Example Design

you started quickly.
IP Manager, you can optionally generate an example Efinity® project and bitstream file to get
an RTL design that instantiates the Ruby SoC. When you generate the Ruby SoC with the
Before working with software code, 易灵思 recommends that you program your board with

www.elitestek.com

• For the 钛金系列 Ti60 F225 Development Board, the design uses the board's HyperRAM

Ruby RISC-V SoC Hardware and Software User Guide

Table 2: Example Design Implementation

FPGA Logic Utilization
(LUTs)

Memory Blocks fMAX (MHz) Language Efinity Version

T120 F324 C4 12,108 78 111.794 Verilog HDL 2020.2

Ti60 F224 C4 Verilog HDL 2021.2

Enable the On-Board 10 MHz Oscillator
For the Trion® T120 BGA324 Development Board, the SoC design uses the on-board
10 MHz oscillator. To enable it, add a jumper to connect pins 2 and 3 on header J10.

Figure 3: Connect Pins 2 and 3 on J10
J10

Note: If you already installed the libusb-win32 driver and want to use OpenOCD, uninstall libusb-win32
and install libusbK instead.

Note: To ensure that the USB driver is persistent across user sessions, run the
Zadig software as administrator.

4. Choose Options > List All Devices.

14

described in the following sections.
When working with OpenOCD on Windows, you need to install the libusbK driver as

• Trion® T120 BGA324 Development Board—Install a composite driver for this board.

interfaces appear as a single composite device.
interface appears as a unique FTDI device. If you install a composite driver, all of the separate
chips have separate channels for each interface. If you install a driver for each interface, each
communicate with the USB port and other interfaces such as SPI, JTAG, or UART. These
易灵思 development boards have FTDI chips (FT232H, FT2232H, or FT4232H) to

Installing USB Drivers

10 MHz Oscillator
GPIOR_188_PLLIN2

Jumper SMA Connector

www.elitestek.com

• 钛金系列 Ti60 F225 Development Board—Install separate drivers for interfaces 0 and 1.

. Run the Zadig software.3
 run the downloaded executable.)

. Download the Zadig software from zadig.akeo.ie. (You do not need to install it; simply2

. Connect the FTDI USB (J12) on the board to your computer with a USB type-C cable.1

To install the interface drivers in Windows:
software, the interface names end with (Interface N), where N is the channel number.
On Windows, you use software from Zadig to install drivers (zadig.akeo.ie). In the Zadig

(钛金系列 Ti60 F225 Development Board)
Installing Drivers on Windows

Ruby RISC-V SoC Hardware and Software User Guide

5. Repeat the following steps for each interface. The interface names end with (Interface N),
where N is the channel number.
• Select libusb-win32 or libusbK in the Driver drop-down list. (Do not choose

WinUSB.)
• Click Replace Driver.

6. Close the Zadig software.

Installing Drivers on Windows
(Trion® T120 BGA324 Development Board)
You use the Zadig software to install the driver, but instead of installing for separate
interfaces, you install a composite driver.

1. Connect the board to your computer with the appropriate cable and power it up.
2. Download the Zadig software from zadig.akeo.ie. (You do not need to install it; simply

run the downloaded executable.)
3. Run the Zadig software.

Note: To ensure that the USB driver is persistent across user sessions, run the
Zadig software as administrator.

4. Choose Options > List All Devices.
5. Turn off Options > Ignore Hubs or Composite Parents.
6. Select the Trion® T20 BGA256 Development Kit.
7. Choose libusbK in the Driver drop-down list.
8. Click Replace Driver.
9. Close the Zadig software.

Installing Drivers on Linux (All Kits)

The following instructions explain how to install a USB driver for Linux operating systems.

1. Disconnect your board from your computer.
2. In a terminal, use these commands:

> sudo <installation directory>/bin/install_usb_driver.sh
> sudo udevadm control --reload-rules

Note: If your board was connected to your computer before you executed these
commands, you need to disconnect and re-connect it.

15www.elitestek.com

automatically installs a driver for them.Windows
and 3 because when you connect the 钛金系列 Ti60 F225 Development Board to your computer,
Important: Install drivers for interfaces 0 and 1 only. You do not need to install drivers for interfaces 2

Board Location

 Ti60F225_devkit

Trion® T120 BGA324 Development Board T120F324_devkit

Download the .hex file to the board using these steps:

1. Connect the board to your computer using a USB cable.
2. Use the Efinity® Programmer and SPI active mode to program the bitstream file into the

flash memory on the board.

Note: You use SPI active mode because you need to reset the FPGA.

3. Press SW2 (CRESET) on the board to reset the FPGA. This reset ensures that the DDR
memory initialization happens before the user application runs.

Learn more: Instructions on how to use the Efinity software and board documentation are available in the
Support Center.

16

Table 3: Available Example Designs

soc_rubySoc.hex, so you can get started quickly without having to compile the design.
design targeting an 易灵思 development board. Example designs include a bitstream file,
When you generate the Ruby SoC in the IP Manager, you can optionally generate an example

Program the Development Board

Ruby RISC-V SoC Hardware and Software User Guide

www.elitestek.com

钛金系列 Ti60 F225 Development Board

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 4

Simulate

The Ruby SoC has a testbench so you can simulate applications in the ModelSim simulator.
The simulation files are located in the Testbench directory. To simulate:

1. Open a terminal (Linux) or Command Prompt (Windows).
2. Change to your SoC module's Testbench directory.
3. Set up the Efinity environment:

• Linux: source /<path to Efinity>/bin/setup.sh
• Windows: source c:\<path to Efinity>\bin\setup.bat

4. To simulate with the default software application, use the command python3 run.py.
A successful simulation returns the following messages:

0 ---
0 [EFX_INFO]: Start executing blinkAndEcho TEST
0 ---
50115 ---
50115 [EFX_INFO]: Receiving uart data from soc
50265 ---
50265 [EFX_INFO]: GPIO TEST PASSED
50265 ---
132665 [EFX_INFO]: UART TEST PASSED
132665 ---
232665 ---
232665 [EFX_INFO]: blinkAndEcho TEST PASSED
232665 ---

5. (Optional) If you want to simulate with your own software application (you need to
develop your own sequence for your application):
• Copy your application binary into the Testbench directory.
• Simulate with the command

python3 run.py -b <path to app><application>.bin

The Ruby SoC simulation uses a special bootloader configuration to speed up simulation by
bypassing the SPI flash data retrieval step. Do not use this bootloader in your Efinity project.

Note: By default, the memory initialization files contain a bootloader application that fetches 124 KB of
data from the SPI flash and transfers it to the external memory. If you want build a custom bootloader, refer
to Modify the Bootloader on page 12.

17

controller and DRAM model, contact 易灵思 at support@elitestek.com.
Note: The simulation model includes a simple memory model. If you need to simulate with the DDR

www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 5

Launch Eclipse
Contents:

• Set Global Environment Variables

Note: With IP Manager, you can generate multiple SoCs with different options. Using the
embedded_sw/<SoC module> directory as your workspace means that you can explore more than one
SoC by simply switching workspaces.

Follow these steps to launch Eclipse and set up your workspace:

1. Launch Eclipse using the run_eclipse.bat file (Windows) or run_eclipse.sh file.
2. The launch script prompts you to select your SoC. Type 2 for Ruby and press enter.
3. If this is the first time you are running Eclipse, create a new workspace that points to

the embedded_sw/<SoC module> directory. Otherwise, choose File > Switch
Workspace > Other to choose an existing workspace directory and click Launch.

Set Global Environment Variables
OpenOCD uses two environment variables, DEBUG and DEBUG_OG. It is simplest to set
them as global environment variables for all projects in your workspace. Then, you can
adjust them as needed for individual projects.

Choose Window > Preferences to open the Preferences window and perform the following
steps.

18

the embedded_sw/<SoC module> directory as the workspace directory.
You should use a unique workspace for your Ruby SoC projects. 易灵思 recommends using
set global environment variables that apply to all software projects in your workspace.
workspace means you can store all of your Ruby software code in the same place and you can
workspace and environment. Setting up a global development environment for your
When you first start working with the Ruby SoC, you need to configure your Eclipse

directly.
and launches Eclipse. Always use this executable to launch Eclipse; do not launch Eclipse
(Linux) that adds executables to your path, sets up envonment variables for the Ruby BSP,
The RISC-V SDK includes the run_eclipse.bat file (Windows) or run_eclipse.sh file

www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

1. In the left navigation menu, expand C/C++ > Build.
2. Click C/C++ > Build > Environment.
3. Click Add and add the following environment variables:

Variable Value Description

DEBUG no Enables or disables debug mode.
no: Debugging is turned off
yes: Debugging is enabled

DEBUG_OG no Enables or disables optimization during debugging.
Use an uppercase letter O not a zero.

4. Click Apply and Close.

19www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 6

Create and Build a Software Project
Contents:

• Create a New Project
• Import Project Settings (Optional)
• Enable Debugging
• Build

Note: You are not required to import the project settings to build. These settings simply make it easier for
you to write and debug code.

To import the settings:

1. Choose File > Import to open the Import wizard.
2. Expand C/C++.
3. Choose C/C++ > C/C++ Project Settings.
4. Click Next.
5. Click Browse next to the Settings file box.
6. Browse to one of the following files and click Open:

20

code easily.

Import Project Settings (Optional)

Click Finish.8.
Select <none> in the Toolchain for Indexer Settings box.7.
Browse to the software/standalone/EfxAxiExample directory and click Select Folder.6.
Click Browse next to Existing Code Location.5.
Choose File > New > Makefile Project with Existing Code.4.

Import the EfxAxiExample example:
3. Make sure you are in the C/C++ perspective.

Select the Ruby workspace if it is not open by default.2.
Launch Eclipse.1.

In this step you create a new project from the EfxAxiExample code example.

Create a New Project

from the software directory.
These instructions walk you through the process using the EfxAxiExample example project
After you set up your Eclipse workspace, you are ready to create a new project and build it.

www.elitestek.com

the
for the C code. Importing these settings into your project lets you explore and jump through
易灵思 provides a C/C++ project settings file that defines the include paths and symbols

Ruby RISC-V SoC Hardware and Software User Guide

Option Description

Windows embedded_sw\<SoC module>\config\project_settings_ruby.xml

Linux embedded_sw/<SoC
module>/config_linux/project_settings_ruby_linux.xml

7. In the Select Project box, select the project name(s) for which you want to import the
settings.

8. Click Finish.

Eclipse creates a new folder in your project named Includes, which contains all of the files
the project uses.

After you import the settings, clean your project (Project > Clean) and then build (Project
> Build Project). The build process indexes all of the files so they are linked in your project.

Enable Debugging
When you set up your workspace, you defined an environment variable for debugging with a
default value of no.

• To run the program for normal operation, keep DEBUG set to no.
• To debug with the OpenOCD debugger, set DEBUG to yes.

In debug mode, the program suspends operation after loading so that you can set breakpoints
or perform debug tasks.

To change the debug settings for your project, right-click the project name EfxAxiExample
in the Project Explorer and choose Properties from the pop-up menu.

21www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

1

3

7

2

4

5

6

1. Expand C/C++ Build.
2. Click C/C++ Build > Environment.
3. Click the Debug variable.
4. Click Edit.
5. Change the Value to yes.
6. Click OK.
7. Click Apply and Close.

Important: When you change the debug value for a project you previously built, you must clean the
project (Project > Clean) before building again. Otherwise, Eclipse gives a message in the Console that
there is Nothing to be done for 'all'

Build
Choose Project > Build Project or click the Build Project toolbar button.

The makefile builds the project and generates these files in the build directory:
• EfxAxiExample.asm—Assembly language file for the firmware.
• EfxAxiExample.bin—Download this file to the flash device on your board using

OpenOCD. When you turn the board on, the SoC loads the application into the RISC-V
processor and executes it.

• EfxAxiExample.elf—Use this file when debugging with the OpenOCD debugger.
• EfxAxiExample.hex—Hex file for the firmware. (Do not use it to program the FPGA.)
• EfxAxiExample.map—Contains the SoC address map.

22www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 7

Debug with the OpenOCD Debugger
Contents:

• Import the Debug Configuration
• Debug

With the development board programmed and the software built, you are ready to configure
the OpenOCD debugger and perform debugging. These instructions use the EfxAxiExample
example to explain the steps required.

Important: If you want to use the OpenOCD Debugger at the same time as the Efinity® Debugger, you
cannot use the same USB connection to the board because they conflict causing one of the applications to
crash. Refer to Efinity Debugger Crashes when using OpenOCD on page 52 for information on using
two USB cables to operate both debuggers simultaneously.

Import the Debug Configuration
To simplify the debugging steps, the Ruby SoC includes debug configurations that you
import. There are several configuration files, depending on which board you use.

Table 4: Debug Configurations

Debug
Configuration

Use for

default Debugging software on Trion® development boards.

default_ti

default_softTap

Option Description

Windows embedded_sw\<SoC module>\config

23

Browse to the following directory and click OK:8.
Click Next. The Import Launch Configurations dialog box opens.7.
In the Import dialog box, choose Run/Debug > Launch Configurations.6.
Right-click the EfxAxiExample project name and choose Import.5.
Open the EfxAxiExample project or select it under C/C++ Projects.4.
Select a workspace (if you have not set one as a default).3.
(Linux).
Launch Eclipse by running the run_eclipse.bat file (Windows) or run_eclipse.sh2.

To import a debug configuration and use it to launch a debug session:

www.elitestek.com

Debugging software on 钛金系列 development boards.

Core for Example Designs on page 45.)
OpenOCD debugger and the Efinity® Debugger at the same time. (See Using a Soft JTAG
TAP interface. For example, you would need to use the soft TAP if you want to use the
Debugging software on Trion or 钛金系列 development boards with the soft JTAG

易灵思 development board, you can use a USB cable instead.
Connect your board to your computer using a JTAG cable. If you are using an1.

Ruby RISC-V SoC Hardware and Software User Guide

Option Description

Linux embedded_sw/<SoC module>/config_linux

Note: For the cpu0.yaml path, make sure to use \\ as the directory separator
because the first slash escapes the second one. For example, use:
c:\\Efinity\\2020.2\\project\\<project name>\\embedded_sw\\<SoC module>
\\cpu0.yaml

16. Click Debug.

Note: If Eclipse prompts you to switch to the Debug Perspective, click Switch.

Debug
After you click Debug in the Debug Configuration window, the OpenOCD server starts,
connects to the target, starts the gdb client, downloads the application, and starts the
debugging session. Messages and a list of VexRiscv registers display in the Console. The
main.c file opens so you can debug each step.

1. Click the Resume button or press F8 to resume code operation. All of the LEDs on the
board blink continuously in unison.

2. Click Step Over (F6) to do a single step over one source instruction.
3. Click Step Into (F5) to do a single step into the next function called.
4. Click Step Return (F7) to do a single step out of the current function.
5. Double-click in the bar to the left of the source code to set a breakpoint. Double-click a

breakpoint to remove it.
6. Click the Registers tab to inspect the processor's registers.
7. Click the Memory tab to inspect the memory contents.
8. Click the Suspend button to stop the code operation.
9. When you finish debugging, click Terminate to disconnect the OpenOCD debugger.

The EfxAxiExample example blinks the LEDs and prints messages on a UART terminal.
Refer to Using a UART Module on page 42 for steps on setting it up.

24www.elitestek.com

<SoC module> directory.
In the Config options box, change ${workspace_loc} to the full path to the b.
Click the Debugger tab.a.

Windows only: you need to change the path to the cpu0.yaml file:15.
Enter build\EfxAxiExample.elf in the C/C++ Application box.14.
Enter EfxAxiExample in the Project box.13.

Configurations.
Right-click the EfxAxiExample project name and choose Debug As > Debug11.
Click Finish.10.
Check the box next to config (Windows) or config_linux (Linux).9.

FPGAs).钛金系列
Choose GDB OpenOCD Debugging > default (Trion FPGAs) or default_ti (12.

Ruby RISC-V SoC Hardware and Software User Guide

Figure 4: Perform Debugging

Learn more: For more information on debugging with Eclipse, refer to Running and debugging projects
in the Eclipse documentation.

25www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 8

After you have explored the Ruby SoC using the included example Efinity® project, you can
use these tips to modify the design for your own use.

26

• Remove Unused Peripherals from the RTL Design
• Use the I2C Interface for a Peripheral instead of DDR Calibration
• Use another DDR DRAM Module (Trion Only)
• Create a Custom APB3 Peripheral
• Create a Custom AXI4 Slave Peripheral
• Target Your Own Board
• Update the FTDI Driver for another 易灵思 Board
• Target another FPGA

Contents:

Create Your Own RTL Design

creating

a

new

project.of
Note: 易灵思 recommends that you use the provided example design project as a starting point instead

point to a different 易灵思 development board.
PID and board description for 易灵思 development boards. You can update the driver(s) to
The Ruby SoC BSP includes FTDI configuration files that specify the FTDI device VID and

Board
Update the FTDI Driver for another 易灵思

Compile your modified design.3.
Generate a constraint file and close the Interface Designer.e.
Continue re-assigning pins until all assignments are valid.d.
assignment in the Resource Assigner. Pick a new resource and press enter.
Click the instance name in the Message Viewer. The software jumps to that c.
Open the Resource Assigner.b.
assignments in the Message Viewer.
detected. Click Update Design. The Interface Designer opens and shows invalid
Open the Interface Designer. The software prompts you that a device change was a.

Update the interface design.2.
Edit the project to change the FPGA, package, and speed grade.1.

To change the design to target a different FPGA:

Target another FPGA

www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Table 5: Provided FTDI Configuration Files

File Use for

ftdi.cfg Trion® T120 BGA324 Development Board

ftdi_ti.cfg

interface ftdi
ftdi_device_desc "Trion T120F324 Development Board"
#ftdi_device_desc "Trion T120F576 Development Board"
ftdi_vid_pid 0x0403 0x6010

6. Save the file.
7. Debug as usual in OpenOCD.

Target Your Own Board
For your own board, you generally use an FTDI cable or another JTAG cable or module.
You can also use an FTDI chip on your board.

Using the FTDI C232HM-DDHSL-0 JTAG cable
The Ruby SoC also includes a configuration file for the FTDI C232HM-DDHSL-0 JTAG
cable (c232hm_ddhsl_0.cfg), which bridges between your computer's USB connector
and the JTAG signals on the FPGA. If you use this cable to connect your board to your
computer, you can simply use this configuration file instead of ftdi.cfg or ftdi_ti.cfg

Note: Refer to Connect the FTDI Cable on page 47 for instructions on using the cable.

Using another JTAG Cable or Module
Generally, when debugging your own board you use a JTAG cable to connect your
computer and the board. Therefore, you need to use the OpenOCD driver for that cable
when debugging. OpenOCD includes a number of configuration files for standard hardware
products. These files are located in the following directory:

openocd/build-win64/share/openocd/scripts/interface (Windows)

openocd/build-x86_64/share/openocd/scripts/interface (Linux)

You can also write your own configuration file if desired.

Follow these instructions when debugging with your own board:

27

T120F576 Development Board:
use this code to change the name from Trion T120F324 Development Board to Trion

Change the

ftdi_device_desc

setting to match the board name. For example,

5.
module>/bsp/efinix/EfxRubySoC/openocd

directory.

In a text editor, open the

ftdi.cfg

or

ftdi_ti.cfg

file in the

embedded_sw/<SoC

4.
Make note of the board name.3.
drop-down list.
Click the

Refresh USB Targets

button to display the board name in the

USB Target

2.

Open the

Efinity®

Programmer.1.
board attached to the computer:development

To target a different 易灵思 development board, follow these steps with the

board

description.the
Note: All 易灵思 development boards have the same VID and PID; therefore, you only need to change

www.elitestek.com

钛金系列 Ti60 F225 Development Board

-f <path>/bsp/efinix/EfxRubySoc/openocd/<my cable>.cfg

Note: Refer to the Trion DDR DRAM Block User Guide for more information on changing the DDR block.

Use the I2C Interface for a Peripheral instead of
DDR Calibration
The example design uses one of the I2C interfaces (I2C 2) to calibrate and reset the DDR
interface. If you do not want to use calibration:

1. In the Efinity® Interface Designer, click Disable Control in the Control tab of the DDR
Block Editor.

2. Remove the DDR control pins in the top-level project file (ddr_inst1_RSTN,
ddr_inst1_CFG_SCL_IN, ddr_inst1_CFG_SDA_IN,
ddr_inst1_CFG_SDA_OEN).

28www.elitestek.com

rmodule.
need to update the DDR block in the Interface Designer to reflect the specifications for your
256 Mbits x 16 bits supporting up to 4 Gb. If you want to target a different module, you
The Trion® T120 BGA324 Development Board has an LPDDR3 DRAM module with

Use another DDR DRAM Module (Trion Only)

 EfxApb3Example/src directory for the C code.
• Refer to main.c in the embedded_sw/<SoC module>/software/standalone/
• Refer to apb3_slave.v in the T120F324_devkit directory for the RTL design.

This simple example shows how to implement an APB3 slave wrapper.
peripheral and software code that you can use as a template to create your own peripheral.
When you generate an example design for the Ruby SoC, the IP Manager creates an APB3

Create a Custom APB3 Peripheral

 standalone/EfxAxiExample/src directory for the C code.
• Refer to main.c in the embedded_sw/<SoC module>/software/
• Refer to axi4_slave.v in the T120F324_devkit directory for the RTL design.
CPU through the AXI4 interface.
peripheral. This example uses the simple dual-port RAM design to write to and read from the
AXI4 peripheral and software code that you can use as a template to create your own
When you generate an example design for the Ruby SoC, the IP Manager creates an example

Create a Custom AXI4 Slave Peripheral

Follow the instructions for debugging, except target your configuration file instead of the 3.
openocd directory.
Copy the OpenOCD configuration file for your cable to the bsp/efinix/EfxRubySoc/ 2.
Connect your JTAG cable to the board and to your computer.1.

Ruby RISC-V SoC Hardware and Software User Guide

ftdi.cfg (Trion) or ftdi_ti.cfg (钛金系列) file.

Ruby RISC-V SoC Hardware and Software User Guide

If you do not use I2C 2 for calibration, you can use it for your own purposes instead.

Remove Unused Peripherals from the RTL
Design
The Ruby SoC includes a variety of peripherals. if you do not want to use a peripheral,
simply remove the signal name from within the parentheses () in the RubySoc RubySoc_inst
definition in the top-level Verilog HDL file. For example, the SoC instantiation has these
signals:

.system_i2c_0_io_sda_write (system_i2c_0_io_sda_write),

.system_i2c_0_io_sda_read (system_i2c_0_io_sda_read),

.system_i2c_0_io_scl_write (system_i2c_0_io_scl_write),

.system_i2c_0_io_scl_read (system_i2c_0_io_scl_read),

To disable I2C 0, remove the signal name in () as shown below:

.system_i2c_0_io_sda_write (),

.system_i2c_0_io_sda_read (),

.system_i2c_0_io_scl_write (),

.system_i2c_0_io_scl_read (),

29www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 9

Create Your Own Software
Contents:

• Deploying an Application Binary
• About the Board Specific Package
• Address Map
• Example Software

Now that you have explored the methodology for designing with the Ruby SoC, you can
develop your own software applications.

Note: The Ruby SoC does not currently support floating point calculations, such as sine and cosine.

Deploying an Application Binary
During normal operation, your user binary application file (.bin) is stored in a SPI flash
device. When the FPGA powers up, the Ruby SoC copies your binary file from the SPI flash
device to the DDR DRAM module, and then begins execution.

For debugging, you can load the user binary (.elf) directly into the Ruby SoC using the
OpenOCD Debugger. After loading, the binary executes immediately.

Note: The settings in the linker prevent user access to the DDR DRAM address. This setting allows the
embedded bootloader to work properly during a system reset after the user binary is executed but the
FPGA is not reconfigured.

Boot from a Flash Device
When the FPGA boots up, the Ruby SoC copies your binary application file from a SPI flash
device to the DDR DRAM module, and then begins execution. The SPI flash binary address
starts at 0x0038_0000.

To boot from a SPI flash device:

1. Power up your board. The FPGA loads the configuration image from the on-board flash
device.

2. When configuration completes, the bootloader begins cloning a 124 KByte user binary
file from the flash device at physical address 0x0038_0000 to an off-chip DRAM logical
address of 0x0000_1000.

Note: It takes ~300 ms to clone a 124 KByte user binary (this is the default size).

3. The Ruby SoC jumps to logical address 0x0000_1000 to execute the user binary.

30www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Boot from the OpenOCD Debugger
To boot from the OpenOCD debugger:

1. Power up your board. The FPGA loads the configuration image from the on-board flash
device.

2. Launch Eclipse and set up the debug environment for your project.
3. When you click Debug, the debugger sends a soft reset to the SoC, and then writes the

user binary file to logical address 0x0000_1000, which is the starting address of the DDR
memory.

4. The Ruby SoC jumps to logical address 0x0000_1000 to execute the user binary.
5. The user binary is suspended on boot up. Click the Resume button to start the program.

Note: Refer to Debug with the OpenOCD Debugger on page 23 for complete instructions.

Copy a User Binary to Flash (Efinity Programmer)
To boot from a flash device, you need to copy the application binary to the flash. If you want
to store the binary in the same flash device that holds the FPGA bitstream, you can simply
combine the two files and download the combined file to the flash device with the Efinity
Programmer.

1. Open the Efinity Programmer.
2. Click the Combine Multiple Image Files button.
3. Choose Mode > Generic Image Combination.
4. Enter a name for the combined file in Output File.
5. Click the Add Image button. The Open Image File dialog box opens.
6. Browse to the bitstream file, select it, and click Open.
7. Click the Add Image button a second time.
8. Browse to the RISC-V application binary file, select it, and click Open.
9. Specify the Flash Address as follows:

File Address

Bitstream 0x00000000

RISC-V application binary 0x00380000

31www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Figure 5: Combining a Bitstream and RISC-V Application Binary

10. Click Apply. The software creates the combined .hex file in the specified Output
Directory (the default is the project outflow directory).

11. Program the flash with the .hex file using Programming Mode > SPI Active.
12. Reset the FPGA or power cycle the board.

Copy a User Binary to the Flash Device (2 Terminals)
To boot from a flash device, you need to copy the binary to the device. These instructions
describe how to use two command prompts or terminals to flash the user binary file.

Note: If you want to store the binary in the same flash device that holds the FPGA bitstream, refer to Copy
a User Binary to Flash (Efinity Programmer) on page 31 instead.

You use two command prompts or terminals:
• The first terminal opens an OpenOCD connection to the SoC.
• The second connects to the first terminal to write to the flash.

Important: If you are using the OpenOCD debugger in Eclipse, terminate any debug processes before
attempting to flash the memory.

Set Up Terminal 1
1. Open a Windows command prompt or Linux shell.
2. Change to SDK_Windows or SDK_Ubuntu.
3. Execute the setup.bat (Windows) or setup.sh (Linux) script.
4. Change to the directory that has the cpu0.yaml file.
5. Type the following commands to set up the OpenOCD server:

Windows (Trion):

openocd.exe -f bsp\efinix\EfxRubySoc\openocd\ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"

32www.elitestek.com

openocd.exe -f bsp\efinix\EfxRubySoc\openocd\ftdi_ti.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxRubySoc\openocd\flash_ti.cfg

Linux (Trion):

openocd -f bsp/efinix/EfxRubySoc/openocd/ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxRubySoc/openocd/flash.cfg

openocd -f bsp/efinix/EfxRubySoc/openocd/ftdi_ti.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxRubySoc/openocd/flash_ti.cfg

The OpenOCD server connects and begins listening on port 4444.

Set Up Terminal 2
1. Open a second command prompt or shell.
2. Enable telnet if it is not turned on. Turn on telnet (Windows)
3. Open a telnet local host on port 4444 with the command telnet localhost 4444.
4. In the OpenOCD shell or command prompt, use the following command to flash the user

binary file:

flash write_image erase unlock <path>/<filename>.bin 0x380000

Where <path> is the full, absolute path to the .bin file.

Note: For Windows, use \\ as the directory separators.

Close Terminals
When you finish:
• Type exit in terminal 2 to close the telnet session.
• Type Ctrl+C in terminal 1 to close the OpenOCD session.

Important: OpenOCD cannot be running in Eclipse when you are using it in a terminal. If you try to run
both at the same time, the application will crash or hang. Always close the terminals when you are done
flashing the binary.

Reset the FPGA
Press the reset button (SW2) on the development board.

33www.elitestek.com

Windows (钛金系列):

-f bsp\efinix\EfxRubySoc\openocd\flash.cfg

Ruby RISC-V SoC Hardware and Software User Guide

Linux (钛金系列):

Ruby RISC-V SoC Hardware and Software User Guide

About the Board Specific Package
The board specific package (BSP) defines the address map and aligns with the Ruby
SoC hardware address map. The BSP files are located in the bsp/efinix/EfxRubySoC
subdirectory.

Table 6: BSP Files

File or Directory Description

app Files used by the example software and bootloader.

include\soc.mk Supported instruction set.

include\soc.h Defines the system frequency and address map.

linker\default.ld Linker script for the main memory address and size.

linker\bootloader.ld Linker script for the bootloader address and size.

openocd OpenOCD configuration files.

34www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Address Map

Table 7: Default Address Map, Interrupt ID, and Cached Channels
The AXI user slave channel is in a cacheless region (I/O) for compatibility with AXI-Lite.

Device Parameter Size Interrupt ID Region

Off-chip DRAM SYSTEM_DDR_BMB 3.5 GB – Cache

GPIO SYSTEM_GPIO_0_IO_APB 4K [0]: 12
[1]: 13

I/O

I2C 0 SYSTEM_I2C_0_IO_APB 4K 8 I/O

I2C 1 SYSTEM_I2C_1_IO_APB 4K 9 I/O

I2C 2 SYSTEM_I2C_2_IO_APB 4K 10 I/O

Machine timer SYSTEM_MACHINE_TIMER_APB 4K 31 I/O

PLIC SYSTEM_PLIC_APB 4K – I/O

SPI master 0 SYSTEM_SPI_0_IO_APB 4K 4 I/O

SPI master 1 SYSTEM_SPI_1_IO_APB 4K 5 I/O

SPI master 2 SYSTEM_SPI_2_IO_APB 4K 6 I/O

UART 0 SYSTEM_UART_0_IO_APB 4K 1 I/O

UART 1 SYSTEM_UART_1_IO_APB 4K 2 I/O

UART 2 SYSTEM_UART_2_IO_APB 4K 3 I/O

User peripheral 0 IO_APB_SLAVE_0_APB 64K – I/O

User peripheral 1 IO_APB_SLAVE_1_APB 64K – I/O

On-chip BRAM SYSTEM_RAM_A_BMB 4 - 512 KB – Cache

AXI user slave SYSTEM_AXI_A_BMB 16 MB – I/O

External interrupt – – 25 I/O

Note: The RISC-V GCC compiler does not support user address spaces starting at 0x0000_0000.

35

www.elitestek.com

names and address mappings are defined in soc.h.
parameter name when referencing an address in firmware, not by the actual address. The parameter
Note: Because the address range might be updated, 易 灵 思 recommends that you always refer to the

Note: Many of these examples display messages on a UART. Refer to the following topics for information
on attaching a UART module and connecting to it in a terminal:
Learn how to attach a UART module.
Learn how to open an Eclipse terminal and connect to the UART module.

Table 8: Example Software Code

Directory Description

axiInterruptDemo Shows how to use the AXI bus interrupt pin to trigger a
software interrupt.

blinkAndEcho This example blinks an LED and prints a string on the UART
terminal.

bootloader This software is the bootloader for the system.

common Provides linking for the makefiles.

dhrystone This example is a synthetic computing benchmark program.

driver This directory contains the system drivers for the peripherals
(I2C, UART, SPI, etc.). Refer to API Reference on page 53 for
details.

EfxApb3Example This example shows how to implement an ABP3 slave.

EfxAxi4Example This example illustrates how to implement a user AXI4 slave.

freertosDemo and freertosDemo2 This example uses the freeRTOS schedular to execute
programs using task and queue allocation.

freertosUartInterruptDemo This example demonstrates UART interrupts using the
FreeRTOS software framework.

i2cDemo This example shows how to connect to an MCP4725 digital-to-
analog converter (DAC) using an I2C peripheral.

i2cSlaveDemo This example illustrates how an I2C slave communicates with
the master.

memTest This code performs a memory address and data test.

readFlash This example shows how to read from a SPI flash device.

spiDemo This code reads the device ID and JEDEC ID of a SPI flash
device and echoes the characters on a UART.

timerAndGpioInterruptDemo This example shows how to use use interrupts with a timer and
GPIO.

userInterruptDemo This example demonstrates user interrupts with UART
messages.

uartInterruptDemo This exmple shows how to use a UART interrupt.

writeFlash This example shows how to write to a SPI flash device.

36

includes a makefile and src directory that contains the source code.
controlling GPIO interrupts, performing Dhrystone benchmarking, etc. Each example
software code that performs functions such as communicating through the UART,
To help you get started writing software for the Ruby, 易灵思 provides a variety of example

Example Software

Ruby RISC-V SoC Hardware and Software User Guide

www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

blinkAndEcho Example
The blink and echo example (blinkAndEcho directory) is a simple example that shows how
to use a register pointer to output data for the GPIO and UART. The design blinks LED
D10. When you type a character, it echoes it on a UART terminal.

dhrystone Example
The Dhrystone example (dhrystone directory) is a classic benchmark for testing CPU
performance. When you run this application, it performs dhrystone benchmark testing and
displays messages and results on a UART terminal.

This benchmark includes accessing the DDR DRAM module on the
Trion® T120 BGA324 Development Board.

The following code shows example results:

Dhrystone Benchmark, Version C, Version 2.2
 Program compiled without 'register' attribute
 Using time(), HZ=12000000
 Trying 500 runs through Dhrystone:
 Final values of the variables used in the benchmark:
 Int_Glob: 5
 should be: 5
 Bool_Glob: 1
 should be: 1
....
 Enum_Loc: 1
 should be: 1
 Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING
 should be: DHRYSTONE PROGRAM, 1'ST STRING
 Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING
 should be: DHRYSTONE PROGRAM, 2'ND STRING

 Microseconds for one run through Dhrystone: 40
 Dhrystones per Second: 24472
 User_Time : 245176
 Number_Of_Runs : 500
 HZ : 12000000
 DMIPS per Mhz: 1.16

EfxAxi4Example Design
This example performs a write and read test for the internal BRAM using the AXI interface.
First the software writes to the internal BRAM. Then it reads back the data and compares it
to the expected value. When the test completes, the application blinks LED D10 and displays
the data that is read back on a UART terminal:

AXI4 Slave Example
00000000
00000004
00000008
0000000C
00000010
00000014
00000018
0000001C
00000020

axiInterruptDemo Design
In this example, the AXI bus interrupt pin triggers a software interrupt when write data to
the AXI bus is 0xABCD. The design displays these messages in a UART terminal:

AXI Interrupt Demo, waiting for AXI interrupt...
Entered AXI Interrupt Routine

37www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

EfxApb3Example
This simple software design illustrates how to use an APB3 slave peripheral.

The APB3 slave is attached to a pseudorandom number generator. When you run the
application, the Ruby SoC programs the APB3 slave to stop generating a new random
number and reads the last random number generated. The test passes if the returned data is a
non-zero value.

APB0 test
Random number: 0xE1ECA84A
Passed!

When you run the application, it blinks LED D10, turns on LEDs D7, D9, and D9, and
displays the message Enabling Memory Checker on the UART terminal.

FreeRTOS Examples
The Ruby SoC supports the popular FreeRTOS real-time operating system, and inlcudes
example software projects targeting the RTOS. For more details on using FreeRTOS, go to
their web site at https://www.freertos.org.

Download the FreeRTOS
The freeRTOS examples require you to download FreeRTOS.

1. Download the FreeRTOS zip file from https://www.freertos.org.
2. Unzip the files into the embedded_sw/<SoC module>/software directory.

After you have downloaded the FreeRTOS, you use the software projects in the same
manner as the other example software.

freertosDemo
This example shows how the FreeRTOS schedular handles two program executions using
task and queue allocation. Generally, the FreeRTOS queue is used as a thread FIFO buffer
and for intertask communication. This example creates two tasks and one queue; the queue
sends and receives traffic. The receive traffic (or receive queue) blocks the program execution
until it receives a matching value from the send traffic (or send queue).

Tasks in the send queue sit in a loop that blocks execution for 1,000 miliseconds before
sending the value 100 to the receive queue. Once the value is sent, the task loops, i.e., blocks
for another 1,000 miliseconds.

When the receive queue receives the value 100, it begins executing its task, which sends the
message Blink to the UART peripheral and toggles an LED on the development board.

Hello world, this is FreeRTOS
Blink
Blink
Blink

freertosDemo2
This example shows how FreeRTOS schedular handles two program executions using a
binary semaphore. The semaphore holds the hardware resource until one of the tasks execute,
which then releases it to the next task. If the hardware resource is running a task, no other
task can use that resource. In this example, two tasks use the same UART peripheral to print
messages. By using a semaphore, the two tasks have alternate access to the UART peripheral.

Hello world, this is FreeRTOS
Inside uart task 1 loop
Inside uart task 2 loop
Inside uart task 1 loop
Inside uart task 2 loop

38www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Inside uart task 1 loop
Inside uart task 2 loop

freertosUartInterruptDemo Example
This demo illustrates the same operation as the uartInterruptDemo, but it executes using the
FreeRTOS software framework. The tasks and queues are allocated to an interrupt routine so
that the FreeRTOS scheduler can control the execution with the given priority.

The application displays messages on a UART terminal:

Hello world
RX FIFO not empty interrupt
RX FIFO not empty interrupt
RX FIFO not empty interrupt

i2cDemo Example
The I2C interrupt example (i2cDemo directory) provides example code for an I2C master
writing data to and reading data from an off-chip MCP4725 device with interrupt. The
Microchip MCP4725 device is a single channel, 12-bit, voltage output digital-to-analog
converter (DAC) with an I2C interface.

The MCP4725 device is available on breakout boards from vendors such as Adafruit and
SparkFun. You can connect the breakout board's SDA and SCL pins to a development board.

Trion® T120 BGA324 Development Board:

• SCL—GPIOT_RXP21, which is pin 3 on PMOD J12
• SDA—GPIOT_RXN21, which is pin 4 on PMOD J12

The code assumes that the I2C block is the only master on the bus, and it sends frames in
blocks. When you run it, the application connects to the MCP4725 device and increases the
DAC value. It also prints the message Start on a UART terminal.

In this example:
• void trap() traps entries on exceptions and interrupt events
• void externalInterrupt() triggers an interrupt event

i2cSlaveDemo Design
This example illustrates how an I2C slave communicates with the master. It uses a 16-bit
address and 16-bit data register for read and write. The slave is ready to access the master after
the Init Done message displays on the UART.

memTest Example
The memory test example (memTest directory) provides example code that performs a
memory test on the DDR DRAM module and reports the results on a UART terminal. A
successful test prints:

Memory test
Success

If the memory test fails, the application prints Failed at address <address>.

readFlash Example
The read flash example (readFlash directory) shows how to read data from the SPI flash
device on the development board. The software reads 124K of data starting at address

www.elitestek.com 39

Ruby RISC-V SoC Hardware and Software User Guide

0x380000, which is the default location of the user binary in the flash device. The application
displays messages on a UART terminal:

Read Flash Start
Addr 00380000 : =FF
Addr 00380001 : =FF
Addr 00380002 : =FF
...
Addr 0039EFFE : =FF
Addr 0039EFFF : =FF
Read Flash End

spiDemo Example
The SPI example (spiDemo directory) provides example code for reading the device ID and
JEDEC ID of the SPI flash device on the development board.
• The default base address map of the SPI flash master is 0xF801_4000.
• The default SCK frequency is half of the SoC system clock frequency.
• The default base address of the UART is 0xF801_0000 with a default baud rate of 115200.

The application displays the results on a UART terminal. It continues to print to the
terminal until you suspend or stop the application.

Hello world
Device ID : 17
CMD 0x9F : EF4018
CMD 0x9F : EF4018
...

timerAndGpioInterruptDemo Example
The GPIO interrupt example (timerAndGpioInterruptDemo directory) provides example
code for implementing a rising edge interrupt trigger with a GPIO pin. When an interrupt
occurs, a UART terminal displays Hello world and then the timer interval. It continues to
print the timer interval until you suspend or stop the application.

Hello world
BSP_MACHINE_TIMER 0
BSP_MACHINE_TIMER 1
...

In this example:
• void trap() traps entries on exceptions and interrupt events
• void externalInterrupt() triggers a GPIO interrupt event

UartInterruptDemo Example
The UartInterruptDemo example shows how to use a UART interrupt to indicate taslk
completion when sending or receiving data over a UART. The UART can trigger a interrupt
when data is available in the UART receiver FIFO or when the UART transmitter FIFO is
empty. In this example, when you type a character in a UART terminal, the data goes to the
UART receiver and fills up FIFO buffer. This action interrupts the processor and forces the
processor to execute an interrupt/priority routine that allows the UART to read from the
buffer and send a message back to the terminal.

The application displays messages on a UART terminal:

RX FIFO not empty interrupt
RX FIFO not empty interrupt
RX FIFO not empty interrupt

40www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

userInterruptDemo Example
The user interrupt example (userInterruptDemo directory) uses one bit from an APB3 slave
peripheral as an interrupt signal to RISC-V processor. The main routine sets up an interrupt
routine, then triggers an interrupt signal to the user interrupt port by programming bit 2 on
the ABP3 slave to high.

When the RISC-V processor receives the interrupt signal, program execution jumps from the
main routine to the interrupt (or priority) routine. The interrupt routine sets bit 2 low so the
processor can leave the interrupt routine.

The application displays the messages on a UART terminal:

User Interrupt Demo, waiting for user interrupt...
Entered User Interrupt Routine
Turn off Interrupt Signal
Leaving User Interrupt Routine

writeFlash Example
The read flash example (readWrite directory) shows how to write data to the SPI flash device
on the development board. The software writes data starting at address 0x380000, which is
the default location of the user binary in the flash device. The application displays address and
data messages on a UART terminal:

Write Flash Start
WR Addr 00380000 : =00
WR Addr 00380001 : =01
WR Addr 00380002 : =02
...
WR Addr 003800FD : =FD
WR Addr 003800FE : =FE
WR Addr 003800FF : =FF
Write Flash End

41www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 10

Finding the COM Port (Windows)
1. Type Device Manager in the Windows search box.
2. Expand Ports (COM & LPT) to find out which COM port Windows assigned to the

UART module. You should see 4 devices listed as USB Serial Port (COMn) where n is the
assigned port number. Note the COM number for the third device; that is the UART.

Finding the COM Port (Linux)
In a terminal, type the command:

ls /dev/ttyUSB*

The terminal displays a list of attached devices.

/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2 /dev/ttyUSB3

The UART is /dev/ttyUSB2.

42www.elitestek.com

• Enable Telnet on Windows
• Open a Terminal
• Set Up a USB-to-UART Module (Trion)
• Using the On-board UART (钛金系列)

Contents:

Using a UART Module

computer.
to the FTDI USB connector on the 钛金系列 Ti60 F225 Development Board and to your
the Ti60's GPIOL_01 and GPIOL_02 pins. To use the UART, simply connect a USB cable
The 钛金系列 Ti60 F225 Development Board has a USB-to-UART converter connected to

Using the On-board UART (钛金系列)

computer. For Trion development boards, you need to use a USB-to-UART converter.
钛金系列 development board, you can simply connect a USB cable to the board and to your
A number of the software examples display messages on a UART terminal. If you are using a

a driver for it.installs
you connect the 钛金系列 Ti60 F225 Development Board to your computer, Windows automatically
communicates with the on-board UART. You do not need to install a driver for this interface because when
Note: The board has an FTDI chip to bridge communication from the USB connector. FTDI interface 2

Ruby RISC-V SoC Hardware and Software User Guide

Set Up a USB-to-UART Module (Trion)
The Trion® T120 BGA324 Development Board does not have a USB-to-UART converter,
therefore, you need to use a separate USB-to-UART converter module. A number of modules
are available from various vendors; any USB-to-UART module should work.

Figure 6: Connect the UART Module to PMOD Connector J12

J12 (PMOD)

GPIOT_RXN20
Ground

UART
to USB
Module

J13 (PMOD)J15 (Ethernet)

RX

Ground
TX

GPIOT_RXP20
123456

789101112
Ground

USB
Connector

Power
Switch

1. Connect the UART module to the PMOD port J12
• RX—GPIOT_RXP20, which is pin 1 on PMOD J12
• TX—GPIOT_RXN20, which is pin 7 on PMOD J12
• Ground—Use ground pin 5 or 11 on PMOD J12.

2. Plug the UART module into a USB port on your computer. The driver should install
automatically if needed.

Finding the COM Port (Windows)
1. Type Device Manager in the Windows search box.
2. Expand Ports (COM & LPT) to find out which COM port Windows assigned to the

UART module; it is listed as USB Serial Port (COMn) where n is the assigned port
number. Note the COM number.

Finding the COM Port (Linux)
In a terminal, type the command:

dmesg | grep ttyUSB

The terminal displays a series of messages about the attached devices.

usb <number>: <adapter> now attached to ttyUSB<number>

There are many USB-to-UART converter modules on the market. Some use an FTDI chip
which displays a message similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0

However, the Trion® T120 BGA324 Development Board also has an FTDI chip and gives
the same message. So if you have both the UART module and the board attached at the same
time, you may receive three messages similar to:

usb 3-3: FTDI USB Serial Device converter now attached to ttyUSB0
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB1
usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB2

43www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

In this case the second 2 lines (marked by usb 3-2) are the development board and the first
line (usb 3-3) is the UART module.

Open a Terminal
You can use any terminal program, such as Putty, termite, or the built-in Eclipse terminal, to
connect to the UART. These instructions explain how to use the Eclipse terminal; the others
are similar.

1. In Eclipse, choose Window > Show View > Terminal. The Terminal tab opens.
Open a Terminal
Disconnect Terminal Connection

2. Click the Open a Terminal button.
3. In the Launch Terminal dialog box, enter these settings:

Option Setting

Choose terminal Serial Terminal

Serial port COMn (Windows) or ttyUSBn (Linux)
where n is the port number for your UART module.

Baud rate 115200

Data size 8

Parity None

Stop bits 1

Encoding Default (ISO-8859-1)

4. Click OK. The terminal opens a connection to the UART.
5. Run your application. Messages are printed in the terminal.
6. When you are finished using the application, click the Disconnect Terminal Connection

button.

Enable Telnet on Windows
Windows does not have telnet turned on by default. Follow these instructions to enable it:

1. Type telnet in the Windows search box.
2. Click Turn Windows features on or off (Control panel). The Windows Features dialog

box opens.
3. Scroll down to Telnet Client and click the checkbox.
4. Click OK. Windows enables telnet.
5. Click Close.

44www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 11

Using a Soft JTAG Core for Example Designs
Contents:

• Enable Soft JTAG Support for the Example Design
• Modify the Interface Design
• Connect the FTDI Cable

The Efinity® Debugger uses the hard JTAG TAP interface. Out of the box, the Ruby SoC
example design also uses the hard JTAG TAP interface for OpenOCD. If you try to use the
same USB connection to the development board for both applications at the same time, they
will conflict. To solve this problem, you use a soft JTAG block to handle the OpenOCD
JTAG communication. With this method, you use an FTDI chip cable to connect the board
to your computer (the Efinity® Debugger uses the USB cable).

The simplest way to implement a soft JTAG interface is to use the IP Manager to output an
example design that enables the soft JTAG interface.

Enable Soft JTAG Support for the Example
Design
When Enable Soft JTAG TAP is set to True, the example design top-level file includes the
soft JTAG TAP signals. To enable this option:

1. Open your project.
2. Right-click the SoC module name under IP in the Project pane to open a context-sensitive

menu.
3. Choose Configure.
4. Choose True for the Enable Soft JTAG TAP option.
5. In the Deliverables tab, enable one or more example designs.
6. Click Generate to generate the SoC with the soft JTAG TAP interface.

Modify the Interface Design
Although you turned on the soft Enable Soft JTAG TAP option, you also need to make
some changes in the Interface Designer:

1. Open the example design project.
2. Open the Interface Designer and make these changes:

a. Remove the JTAG User Tap block.
b. Create these GPIO blocks for the soft JTAG pins:

• io_jtag_tck—Configure as input; enable Schmitt trigger.
• io_jtag_tdi—Configure as input.

45

www.elitestek.com

for the cable.
mini-module because the software generated by the IP Manager includes the debug configuration file
Note: 易灵思 recommends you use the C232HM-DDHSL-0 FTDI chip cable rather than a JTAG

Ruby RISC-V SoC Hardware and Software User Guide

• io_jtag_tdo—Configure as output.
• io_jtag_tms—Configure as input.

Note: Make sure that the instance names and pin names match the soft JTAG
I/O ports in the top_rubySoc module in the top_rubySoc.v file (top-level
RTL).

c. In the Resource Assigner, assign the soft JTAG ports to the I/O pins you want to use.

Note: When using the C232HM-DDHSL-0 FTDI chip cable, make sure that
the assigned I/O pins use the 3.3V I/O standard and the I/O pin you assign for
io_jtag_tck supports Schmitt Trigger.

d. Check the design to ensure that you have connected everything correctly. The
Interface Designer issues warnings or error messages if it finds design issues.

e. Save and exit the Interface Designer.
3. Add a Virtual I/O or Logic Analyzer core to your design. For instructions, refer to the

Debugging chaper in the Efinity Software User Guide.
4. Compile the design.
5. Download the resulting bitstream file to your board using the Efinity® Programmer and a

USB cable connected to the board.

46www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Connect the FTDI Cable
When you modified your project to use the soft JTAG block, you assigned GPIO for the 4
JTAG signals, TMS, TDK, TCI, TDO. These GPIO should be assigned to header pins on the
development board so you can connect the C232HM-DDHSL-0 FTDI chip cable to those
pins.

Note: If you have not already done so, install the driver for the FTDI cable as described in Installing USB
Drivers on page 14.

Connecting the FTDI Cable
Connect the cable to your board using the following figure as a guide.

Figure 7: Connecting the C232HM-DDHSL-0 Cable

TCK TDI TDO TMS GND

USB
Connector

Connect to GPIO pins
you assigned in the
Interface Designer.

Connect to
Ground Pin

Debugging in Eclipse
1. Open your Eclipse project.
2. Run or debug the software with the OpenOCD debugger using the default_softTap

launch configuration.
3. Refer to Debug with the OpenOCD Debugger on page 23 for complete instructions.
4. Open the Debugger to perform hardware debugging.

47www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 12

Troubleshooting
Contents:

• Error 0x80010135: Path too long (Windows)
• OpenOCD Error: timed out while waiting for target halted
• Memory Test
• OpenOCD error code (-1073741515)
• OpenOCD Error: no device found
• OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
• OpenOCD Error: target 'fpga_spinal.cpu0' init failed
• Eclipse Fails to Launch with Exit Code 13
• Efinity Debugger Crashes when using OpenOCD
• Undefined Reference to 'cosf'

Error 0x80010135: Path too long (Windows)
When you unzip the SDK on Windows, you may get the error message:

An unuexpected error is keeping you from copying the file. If you continue
to receive this error, you can use the error code to search for help with
this problem.

Error 0x80010135: Path too long

This error occurs if you try to unzip the SDK files into a deep folder hierarchy instead of one
that is close to the root level. Instead unzip to c:\riscv-sdk.

OpenOCD Error: timed out while waiting for
target halted
The OpenOCD debugger console may display this error when:
• There is a bad contact between the FPGA header pins and the programming cable.
• The FPGA is not configured with a Ruby SoC design.
• You may not have the correct PLL settings to work with the Ruby SoC.
• Your computer does not have enough memory to run the program.

To solve this problem:
• Make sure that all of the cables are securly connected to the board and your computer.
• Ensure that you have placed a jumper on J10 connecting pins 2 and 3. This jumper enables

the 10 MHz on-board oscillator. Refer to Enable the On-Board 10 MHz Oscillator on
page 14.

• Check the JTAG connection.
• Ensure that the FPGA is programmed with the Ruby SoC. Refer to Program the

Development Board on page 16.

48www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Memory Test
Your user binary may not boot correctly if there is a memory corruption problem (that
is, the communication between the DDR hard controller and memory module is not
functioning). This issue can appear when booting using the SPI flash or OpenOCD debugger.
The following instructions provide a debugging flow to determine whether you system has
this problem. You use two command prompts or shells to perform the test:
• The first terminal opens an OpenOCD connection to the SoC.
• The second connects to the first terminal for performing the test.

Important: If you are using the OpenOCD debugger in Eclipse, terminate any debug processes before
performing this test.

Set Up Terminal 1
1. Open a Windows command prompt or Linux shell.
2. Change to SDK_Windows or SDK_Ubuntu.
3. Execute the setup.bat (Windows) or setup.sh (Linux) script.
4. Change to the directory that has the cpu0.yaml file.
5. Type the following commands to set up the OpenOCD server:

Windows (Trion):

openocd.exe -f bsp\efinix\EfxRubySoc\openocd\ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxRubySoc\openocd\flash.cfg

openocd.exe -f bsp\efinix\EfxRubySoc\openocd\ftdi_ti.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp\efinix\EfxRubySoc\openocd\flash_ti.cfg

Linux (Trion):

openocd -f bsp/efinix/EfxRubySoc/openocd/ftdi.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxRubySoc/openocd/flash.cfg

openocd -f bsp/efinix/EfxRubySoc/openocd/ftdi_ti.cfg
 -c "set CPU0_YAML cpu0.yaml"
 -f bsp/efinix/EfxRubySoc/openocd/flash_ti.cfg

The OpenOCD server connects and begins listening on port 4444.

49www.elitestek.com

Windows (钛金系列):

Linux (钛金系列):

Ruby RISC-V SoC Hardware and Software User Guide

Set Up Terminal 2
1. Open a second command prompt or shell.
2. Enable telnet if it is not turned on. Turn on telnet (Windows)
3. Open a telnet host on port 4444 with the command telnet localhost 4444.
4. To test the on-chip RAM, use the mdw command to get the bootloader binary. Type

the command mdw <address> <number of 32-bit words> to display the content of the
memory space. For example: mdw 0xF900_0000 32.

5. To test the DRAM:
• Use the mww command to write to the memory space: mww <address> <data>. For

example: mww 0x00001000 16.
• Then, use the mdw command to write to the memory space: mdw <address>

<data>. For example: mdw 0x00001000 16. If the memory space has collapsed,
the console shows all 0s.

Close Terminals
When you finish:
• Type exit in terminal 2 to close the telnet session.
• Type Ctrl+C in terminal 1 to close the OpenOCD session.

Important: OpenOCD cannot be running in Eclipse when you are using it in a terminal. If you try to run
both at the same time, the application will crash or hang. Always close the terminals when you are done
flashing the binary.

Error: no device found
Error: unable to open ftdi device with vid 0403, pid 6010, description 'Trion T20 Development
 Board', serial '*' at bus location '*'

50

OpenOCD Error: no device found

Windows systems.
have the libusb0.dll installed. To fix this problem, install the DLL. This issue only affects
The OpenOCD debugger may fail with error code -1073741515 if your system does not

OpenOCD error code (-1073741515)

Press the reset button (SW2) on the development board.

Reset the FPGA

www.elitestek.com

Make note of the board name.3.
drop-down list.
Click the Refresh USB Targets button to display the board name in the USB Target 2.
Open the Efinity Programmer.1.

To fix this problem, follow these steps with the development board attached to the computer:

efinix/EFXRubySoC/openocd

directory./bsp/
In a text editor, open the ftdi.cfg (Trion) or ftdi_ti.cfg (钛金系列) file in the 4.

match the name in the driver, OpenOCD will fail with an error similar to the following:
have a different name than the one given in the driver file. If the board name does not
board description. In some cases, an early revision of the 易灵思 development board may
The FTDI driver included with the Ruby SoC specifies the FTDI device VID and PID, and

Ruby RISC-V SoC Hardware and Software User Guide

5. Change the ftdi_device_desc setting to match your board name. For example,
use this code to change the name from Trion T20 Development Board to Trion T20
Developer Board:

interface ftdi
ftdi_device_desc "Trion T20 Developer Board"
#ftdi_device_desc "Trion T20 Development Board"
ftdi_vid_pid 0x0403 0x6010

6. Save the file.
7. Debug as usual in OpenOCD.

OpenOCD Error: failed to reset FTDI device:
LIBUSB_ERROR_IO
This error is typically caused because you have the wrong Windows USB driver for the
development board. If you have the wrong driver, you will get an error similar to:

Error: failed to reset FTDI device: LIBUSB_ERROR_IO
Error: unable to open ftdi device with vid 0403, pid 6010, description
'Trion T20 Development Board', serial '*' at bus location '*'

OpenOCD Error: target 'fpga_spinal.cpu0' init
failed
You may receive this error when trying to debug after creating your OpenOCD debug
configuration. The Eclipse Console gives an error message similar to:

Error cpuConfigFile C:RiscVsoc_Jadesoc_jade_swcpu0.yaml not found
Error: target 'fpga_spinal.cpu0' init failed

This error occurs because the path to the cpu0.yaml file is incorrect, specifically the slashes
for the directory separators. You should use:
• a single forward slash (/)
• 2 backslashes (\\)

For example, either of the following are good:

C:\\RiscV\\soc_Jade\\soc_jade_sw\\cpu0.yaml
C:/RiscV/soc_Jade/soc_jade_sw/cpu0.yaml

Eclipse Fails to Launch with Exit Code 13
The Eclipse software requires a 64-bit version of the Java JRE. If you use a 32-bit version,
when you try to launch Eclipse you will get an error that Java quit with exit code 13.

If you are downloading the JRE using a web browser from www.java.com, it defaults to
getting the 32-bit version. Instead, go to https://www.java.com/en/download/manual.jsp
to download the 64-bit version.

51

to

Installing USB Drivers

on page

14.Refer
Important: 易灵思 recommends using the libusbK driver, which you install using the Zadig software.

www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Efinity® Debugger Crashes when using
OpenOCD
The Efinity® Debugger crashes if you try to use it for debugging while also using OpenOCD.
Both applications use the same USB connection to the development board, and conflict if you
use them at the same time. To avoid this issue:
• Do not use the two debuggers at the same time.
• Use an FTDI cable and a soft JTAG core for OpenOCD debugging. See Using a Soft

JTAG Core for Example Designs on page 45 for details.

Undefined Reference to 'cosf'
You may receive an error similar to this when using calculating square root, sine, or cosine
with floating-point numbers in your application. The Ruby SoC does not currently support
floating point.

52www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Chapter 13

API Reference
Contents:

• Control and Status Registers
• GPIO API Calls
• I2C API Calls
• I/O API Calls
• Machine Timer API Calls
• PLIC API Calls
• SPI API Calls
• SPI Flash Memory API Calls
• UART API Calls
• Handling Interrupts

The following sections describe the API for the code in the driver directory.

Control and Status Registers
csr_clear()

Usage csr_clear(csr, val)

Include driver/riscv.h

Description Clear a CSR.

csr_read()

Usage csr_read(csr)

Include driver/riscv.h

Description Read from a CSR.

Example csrr (t0, mepc) // Write mepc in regfile[t0]

csr_read_clear()

Usage csr_read_clear(csr, val)

Include driver/riscv.h

Description CSR read and clear bit.

csr_read_set()

Usage csr_read_set(csr, val)

Include driver/riscv.h

Description CSR read and set bit.

53www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

csr_set()

Usage csr_set(csr, val)

Include driver/riscv.h

Description CSR set bit.

csr_swap()

Usage csr_write(csr, val)

Include driver/riscv.h

Description Swaps values in the CSR.

csr_write()

Usage csr_write(csr, val)

Include driver/riscv.h

Description Write to a CSR.

Example csrw (mepc, t0); // Write regfile[t0] in mepc

GPIO API Calls
gpio_getFilteringHit()

Usage gpio_getFilteringHit(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register filter hit with a call back function.

Example
if(gpio_getFilteringHit(I2C_CTRL) == 1)
// Check filter hit value, bit [7] from slave address,
// read =’1’ write =’0’

gpio_getFilteringStatus()

Usage gpio_getFilteringStatus(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register filter hit with a call back function.

Example
if(gpio_getFilteringStatus (I2C_CTRL) == 1)
// Check filter hit status, bit [7] from slave address, read =’1’
 write =’0

54www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

gpio_getInput()

Usage gpio_getInput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Get input from a GPIO.

gpio_getInterruptFlag()

Usage gpio_getInterruptFlag(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register interrupt flag with a call back function.

Example
Int flag = gpio_getInterruptFlag(I2C_CTRL) & I2C_INTERRUPT_DROP;
// Get Drop interrupt flag from Interrupt register
//[2] I2C_INTERRUPT_TX_DATA
//[3] I2C_INTERRUPT_TX_ACK
//[7] I2C_INTERRUPT_DROP
//[16] I2C_INTERRUPT_CLOCK_GEN_BUSY
//[17] I2C_INTERRUPT_FILTER

gpio_getMasterStatus()

Usage gpio_getMasterStatus(reg)

Parameters [IN] reg struct of I2C setting value

Include driver/i2c.h

Description Read the 32-bit I2C register master status with a call back function.

Example
int status = gpio_getMasterStatus(I2C_CTRL) & I2C_MASTER_BUSY;
// Get master busy status from status register
[0]I2C_MASTER_BUSY
[4]I2C_MASTER_START
[5]I2C_MASTER_STOP
[6]I2C_MASTER_DROP

gpio_getOutput()

Usage gpio_getOutput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Read the output pin.

55www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

gpio_getOutputEnable()

Usage gpio_getOutputEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Read GPIO output enable.

gpio_setOutput()

Usage gpio_setOutput(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set GPIO as 1 or 0.

gpio_setOutputEnable()

Usage gpio_setOutputEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set GPIO as an output enable.

gpio_setInterruptRiseEnable()

Usage gpio_etInterruptRiseEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt on the rising edge of the GPIO.

gpio_setInterruptFallEnable()

Usage gpio_setInterruptFallEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt on the falling edge of the GPIO.

gpio_setInterruptHighEnable()

Usage gpio_setInterruptHighEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt when the GPIO is high.

56www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

gpio_setInterruptLowEnable()

Usage gpio_setInterruptLowEnable(GPIO_Reg, value)

Parameters [IN] GPIO_Reg struct of GPIO register
[IN] value GPIO pin bitwise

Include driver/gpio.h

Description Set an interrupt when the GPIO is low.

I2C API Calls
i2c_applyConfig()

Usage void i2c_applyConfig(u32 reg, I2c_Config *config)

Parameters [IN] reg struct of I2C setting value
[IN] config struct of I2C configuration

Include driver/i2c.h

Description Apply I2C configuration to register or for initial configuration.

i2c_clearInterruptFlag()

Usage void i2c_clearInterruptFlag(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register

Include driver/i2c.h

Description Clear the I2C interrupt flag.

i2c_disableInterrupt()

Usage void i2c_disableInterrupt(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register:
• [2] I2C_INTERRUPT_TX_DATA
• [3] I2C_INTERRUPT_TX_ACK
• [7] I2C_INTERRUPT_DROP
• [16] I2C_INTERRUPT_CLOCK_GEN_BUSY
• [17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Disable I2C interrupt.

Example
i2c_disableInterrupt(I2C_CTRL, I2C_INTERRUPT_TX_ACK);
// Enable I2C interrupt with interrupt TX Ack

57www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

i2c_enableInterrupt()

Usage void i2c_enableInterrupt(u32 reg, u32 value)

Parameters [IN] reg struct of I2C setting value
[IN] value I2C interrupt register:
• [2] I2C_INTERRUPT_TX_DATA
• [3] I2C_INTERRUPT_TX_ACK
• [7] I2C_INTERRUPT_DROP
• [16] I2C_INTERRUPT_CLOCK_GEN_BUSY
• [17] I2C_INTERRUPT_FILTER

Include driver/i2c.h

Description Enable I2C interrupt.

Example
i2c_enableInterrupt(I2C_CTRL, I2C_INTERRUPT_FILTER |
 I2C_INTERRUPT_DROP);
// Enable I2C interrupt with interrupt filter and drop

i2c_filterEnable()

Usage void i2c_filterEnable(u32 reg, u32 filterId, u32 config)

Parameters [IN] reg struct of I2C setting value
[IN] filterID filter configuration ID number
[IN] config struct of I2C configuration

Include driver/i2c.h

Description Enable the filter configuration.

i2c_listenAck()

Usage void i2c_listenAck(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Listen acknowledge from the slave.

i2c_masterBusy()

Usage void i2c_masterBusy(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Get the I2C busy status.

i2c_masterStatus()

Usage int i2c_masterStatus(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Get the I2C status.

58www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

i2c_masterDrop()

Usage void i2c_masterDrop(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the drop state.

Example i2c_masterDrop(I2C_CTRL);

i2c_masterStart()

Usage void i2c_masterStart(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the start status.

i2c_masterStartBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Asserts a start condition.

i2c_masterStop()

Usage void i2c_masterStop(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Change the I2C master to the stop status.

i2c_masterStopBlocking()

Usage void i2c_masterStartBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Asserts a stop condition.

i2c_masterStopWait()

Usage void i2c_masterStopWait(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description The stop condition is wait busy..

59www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

i2c_setFilterConfig()

Usage void i2c_setFilterConfig(u32 reg, u32 filterId, u32 config)

Parameters [IN] reg struct of I2C setting value
[IN] filterID filter configuration ID number
[IN] config struct of I2C configuration:
• [9:0] I2C slave address
• [14] I2C_FILTER_10BITS
• [15] I2C_FILTER_ENABLE

Include driver/i2c.h

Description Set the filter configuration.

Example
i2c_setFilterConfig(I2C_CTRL, 0, 0x30 | I2C_FILTER_ENABLE);
// Enable filter with ID=0 slave addr = 0x30 default 7 bit filter

i2c_txAck()

Usage void i2c_txAck(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Transmit acknowledge.

i2c_txAckBlocking()

Usage void i2c_txAckBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Assert an ACK on the SDA pin.

i2c_txAckWait()

Usage void i2c_txAckWait(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Wait for an acknowledge to transmit.

i2c_txByte()

Usage void i2c_txByte(u32 reg, u8 byte)

Parameters [IN] reg struct of I2C register
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Transfers one byte to the I2C slave.

60www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

i2c_txByteRepeat()

Usage void i2c_txByteRepeat(u32 reg, u8 byte)

Parameters [IN] reg struct of I2C register
[IN] byte 8 bits data to send out

Include driver/i2c.h

Description Send a byte and then wait until it is fully transmited on the I2C bus.

i2c_txNack()

Usage void i2c_txNack(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Transfers a NACK.

i2c_txNackRepeat()

Usage void i2c_txNackRepeat(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Send a NACK and then wait until it is fully transmited on the I2C bus.

i2c_txNackBlocking()

Usage void i2c_ txNackBlocking(u32 reg)

Parameters [IN] reg struct of I2C register

Include driver/i2c.h

Description Assert a NACK on the SDA pin.

i2c_rxAck()

Usage int i2c_rxAck(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 bit acknowledge

Include driver/i2c.h

Description Receive an acknowledge from the I2C slave.

i2c_rxData()

Usage unit32_t i2c_rxData(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 byte data from I2C slave

Include driver/i2c.h

Description Receive one byte data from I2C slave.

61www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

i2c_rxNack()

Usage int i2c_rxNack(u32 reg)

Parameters [IN] reg struct of I2C register

Returns [OUT] 1 bit no acknowledge

Include driver/i2c.h

Description Receive no acknowledge from the I2C slave.

I/O API Calls
read_u8()

Usage u8 read_u8(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 8 bits.

read_u16()

Usage u16 read_u16(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 16 bits.

read_u32()

Usage u32 read_u32(u32 address)

Include driver/io.h

Parameters [IN] address SoC address

Description Read address with unsigned 32 bits.

write_u8()

Usage void write_u8(u8 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 8 bits unsigned data to the specified address.

62www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

write_u16()

Usage void write_u16(u16 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 16 bits unsigned data to the specified address.

write_u32()

Usage void write_u32(u32 data, u32 address)

Include driver/io.h

Parameters [IN] data SoC address data
[IN] address SoC address

Description Write 32 bits unsigned data to the specified address.

write_u32_ad()

Usage void write_u32_ad(u32 address, u32 data)

Include driver/io.h

Parameters [IN] address SoC address
[IN] data SoC address data

Description Write 32 bits unsigned data to the specified address.

Machine Timer API Calls
machineTimer_setCmp()

Usage void machineTimer_setCmp(u32 p, u64 cmp)

Include driver/machineTimer.h

Parameters [IN] p machine timer interrupt
[IN] cmp machine timer compare register

Description Set a timer value to trigger an interrupt.

machineTimer_getTime()

Usage u64 machineTimer_getTime(u32 p)

Include driver/io.h

Parameters [IN] p machine timer interrupt

Returns [OUT] timer value

Description Gets the timer value.

63www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

machineTimer_uDelay()

Usage u64 machineTimer_uDelay(u32 usec, u32 hz, u32 reg)

Include driver/io.h

Parameters [IN] usec microseconds
[IN] hz core frequency
[IN] reg machine timer interrupt

Description Use the machine timer to make a delay.

PLIC API Calls
plic_set_priority()

Usage void plic_set_priority(u32 plic, u32 gateway, u32 priority)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] gateway interrupt type
[IN] priority interrupt priority

Description Set the interrupt priority.

plic_set_enable()

Usage void plic_set_enable(u32 plic, u32 target, u32 gateway, u32
enable)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] gateway interrupt type
[IN] enable

Description Set the interrupt enable.

plic_set_threshold()

Usage void plic_set_threshold(u32 plic, u32 target, u32 threshold)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] threshold enable = 1

Description Masks individual interrupt sources for the HART.

64www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

plic_claim()

Usage u32 plic_claim(u32 plic, u32 target)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number

Description Claim the PLIC interrupt

plic_release()

Usage void plic_release(u32 plic, u32 target, u32 gateway)

Include driver/plic.h

Parameters [IN] plic PLIC register structure
[IN] target HART number
[IN] gateway interrupt type

Description Release the PLIC interrupt.

SPI API Calls
spi_applyConfig()

Usage void spi_applyConfig(Spi_Reg *reg, Spi_Config *config)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] config struct of the SPI configuration

Description Applies the SPI configuration to to a register for initial configuration.

spi_cmdAvailability()

Usage spi_cmdAvailability(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Description Read the SPI command buffer.

spi_diselect()

Usage void spi_select(Spi_Reg *reg, uint32_t slaveId)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] slaveId ID for the slave

Description De-asserts the SPI select (SS) pin.

65www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

spi_read()

Usage uint8_t spi_write(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Returns [OUT] reg One byte of data

Description Receives one byte from the SPI slave.

spi_rspOccupancy()

Usage spi_rspOccupancy(Spi_Reg *reg)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register

Description Read the occupancy buffer.

spi_select()

Usage void spi_select(Spi_Reg *reg, uint32_t slaveId)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] slaveId ID for the slave

Description Asserts the SPI select (SS) pin.

spi_write()

Usage void spi_write(Spi_Reg *reg, uint8_t data)

Include driver/spi.h

Parameters [IN] reg struct of the SPI register
[IN] data 8 bits of data to send out

Description Transfers one byte to the SPI slave.

SPI Flash Memory API Calls
spiFlash_f2m_()

Usage void spiFlash_f2m_(Spi_Reg * spi, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] flashAddress flash device address
[IN] memoryAddress memory address
[IN] size programming address size

Description Copy data from the flash device to memory.

66www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

spiFlash_f2m()

Usage void spiFlash_f2m(Spi_Reg * spi, u32 cs, u32 flashAddress, u32
memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select
[IN] flashAddress flash device address
[IN] memoryAddress memory address

Description Copy data from the flash device to memory with chip select control.

spiFlash_f2m_withGpioCs()

Usage void spiFlash_f2m_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio, u32
cs, u32 flashAddress, u32 memoryAddress, u32 size)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select
[IN] flashAddress flash device address
[IN] memoryAddress memory address
[IN] size programming address size

Description Flash device from the SPI master with GPIO chip select.

spiFlash_diselect()

Usage void spiFlash_diselect(Spi_Reg *spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description De-asserts the SPI flash device from the master chip select.

spiFlash_diselect_withGpioCs()

Usage void spiFlash_diselect_withGpioCs(Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description De-asserts the SPI flash device from the master with the GPIO chip select.

spiFlash_init_()

Usage void spiFlash_init_(Spi_Reg * spi)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register

Description Initialize the SPI reg struct.

67www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

spiFlash_init()

Usage void spiFlash_init(Spi_Reg * spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Initialize the SPI reg struct with chip select de-asserted.

spiFlash_init_withGpioCs()

Usage void spiFlash_init_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio,
u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Initialize the SPI reg struct with GPIO chip select de-asserted.

spiFlash_select()

Usage void spiFlash_select(Spi_Reg *spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Select the SPI flash device.

spiFlash_select_withGpioCs()

Usage spiFlash_select_withGpioCs(Gpio_Reg *gpio, u32 cs)

Include driver/spiFlash.h

Parameters [IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Select the SPI flash device with the GPIO chip select.

spiFlash_wake_()

Usage void spiFlash_wake_(Spi_Reg * spi)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register

Description Release power down from the SPI master.

68www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

spiFlash_wake()

Usage void spiFlash_wake(Spi_Reg * spi, u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] cs chip select

Description Release power down from the SPI master with chip select.

spiFlash_wake_withGpioCs()

Usage void spiFlash_wake_withGpioCs(Spi_Reg * spi, Gpio_Reg *gpio,
u32 cs)

Include driver/spiFlash.h

Parameters [IN] spi reg struct of the SPI register
[IN] gpio reg struct of the GPIO register
[IN] cs chip select

Description Release power down from the SPI master with the GPIO chip select.

UART API Calls
uart_applyConfig()

Usage char uart_applyConfig(Uart_Reg *reg, Uart_Config *config)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] config struct of the UART configuration

Description Applies the UART configuration to to a register for initial configuration.

uart_emptyInterruptEna()

Usage uart_emptyInterruptEna(u32 reg char ena)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] ena Enable interrupt

Description Enable the TX FIFO empty interrupt.

uart_NotemptyInterruptEna()

Usage uart_NotemptyInterruptEna(u32 reg char ena)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] ena Enable interrupt

Description Enable the RX FIFO not empty interrupt.

69www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

uart_read()

Usage char uart_read(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Returns [OUT] reg character that is read

Description Reads a character from the UART slave.

uart_readOccupancy()

Usage uint32_t uart_readOccupancy(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Description Read the number of bytes in the RX FIFO.

uart_status_read()

Usage uart_status_read(u32 reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Returns [OUT] 32-bit status register from the UART

Description Read the UART status.

uart_status_write()

Usage uart_status_write(u32 reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] data input data for the UART status.

Returns [OUT] 32-bit status register from the UART

Description Write the UART status.

uart_write()

Usage void uart_write(Uart_Reg *reg, char data)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] data write a character

Description Write a character to the UART.

70www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

uart_writeStr()

Usage void uart_writeStr(Uart_Reg *reg, char* str)

Include driver/uart.h

Parameters [IN] reg struct of the UART register
[IN] str string to write

Description Write a string to the UART TX.

uart_writeAvailability()

Usage uart_writeAvailability(Uart_Reg *reg)

Include driver/uart.h

Parameters [IN] reg struct of the UART register

Description UART read/write FIFO.

Handling Interrupts
There are two kinds of interrupts, trap vectors and PLIC interrupts, and you handle them
using different methods.

Figure 8: Types of Interrupts

Trap
Vector

Exceptions

Machine Timer

Machine External Interrupt

PLIC

I2C Interrupt

SPI Interrupt

UART Interrupt

External Interrupt

Other Interrupt

RISC-V
SoC

Trap

Machine Trap
Cause (mcause)

Interrupt Claim Registers

mcause
Register

Interrupt ID

Trap Vectors
Trap vectors trap interrupts or exceptions from the system. Read the Machine Cause Register
(mcause) to identify which type of interrupt or exception fthe system is generating. Refer
to "Machine Cause Register (mcause): 0x342" in the data sheet for your SoC for a list of the
exceptions and interrupts used for trap vectors. The following flow chart explains how to
handle trap vectors.

For CAUSE_MACHINE_EXTERNAL, it will call the subroutine to process the PLIC level
interrupts.

71www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Figure 9: Handling Trap Vectors

Call Trap

Read mcause

Is Interrupt? Call Exceptions()
yes

no

CAUSE_MACHINE_TIMER? Call Timer()
yes

Call ExternalInterrupt()
yes

no

Call Exceptions() or
handle by user

no

CAUSE_MACHINE_EXTERNAL?

PLIC Interrupts
The PLIC collects external interrupts and is also used for
CAUSE_MACHINE_EXTERNAL cases. Read the interrupt claim registers (PLIC claim) to
identify the source of the external interrupt. Refer to Address Map on page 35 for a list of
the interrupt IDs.

The following flow chart shows how the PLIC handles interrupts.The PLIC identifies the
interrupt ID and processes the corresponding interrupts.

72www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Figure 10: Handling PLIC Interrupts

Call ExternalInterrupt()

Read PLIC Claim

Is Interrupt
Claimed?

Call I2C Interrupt()

no

yes

PLIC_SYSTEM_UART_INTERRUPT? Call UART Interrupt()
yes

Call SPI Interrupt()
yes

no

Call Exceptions()

no

PLIC_SYSTEM_SPI_INTERRUPT?

PLIC_SYSTEM_I2C_INTERRUPT? yes

no

Call Other PLIC Interrupt()
yes

no

Other PLIC Interrupt?

Release
Claimed Interrupt

73www.elitestek.com

Ruby RISC-V SoC Hardware and Software User Guide

Revision History

Table 9: Revision History

Date Version Description

December 2021 2.4 Updated the version numbers for SDK tools.
Updated the options for configuring the SoC operating frequency and on-
chip RAM in the IP Configuration wizard.
The simulation instructions now use run.py.
Explained new Efinity Programmer feature for programming a flash device
with a combined user bitstream and application binary.
For the PLIC API calls, include the plic.h file (not io.h).

September 2021 2.3 The SoC Operating Frequency (Hz) minimum frequency changed to
20000000 Hz. (DOC-544)

July 2021 2.2 Added link to OpenJDK (DOC-457)
Added information about the flow for handling interrupts in the API
Reference chapter. (DOC-398)
Updated the GPIO, I2C, and UART API calls. (DOC-454)
Added additional instructions on using the Efinity and OpenOCD
debuggers at the same time. (DOC-426)
Added descriptions for the axiInterruptDemo, dmasg, and i2cSlaveDemo
examples.

February 2021 2.1 Corrected the pin numbers for PMOD Connector J12 in
Trion® T120 BGA324 Development Board.

December 2020 2.0 Updated to describe new configuration and deliverables via IP Manager in
Efinity® v2020.2.

November 2020 1.2 Added uartInterruptDemo example.
Added freeRTOS example.

August 2020 1.1 Updated for v1.1 of the SDK; the process for setting up Eclipse
environment variables and debug configurations is streamlined.
Added chapter on simulation.
User peripheral address size changed to 64K.
io_apbSlave_PADDR size changed to 15:0.
AXI user slave peripheral address size changed to 16 MB.
Added the freeRTOS example software description.
Added FTDI Dual RS232 HS mini module in steps to install the USB driver.
Updated instructions for installing USB drivers on Linux.

June 2020 1.0 Initial release.

74www.elitestek.com

	Contents
	Introduction
	VexRiscv RISC-V Core
	Required Software
	Required Hardware

	1. Install Software and SoC
	Install the Efinity® Software
	Install the RISC-V SDK
	Install the Java JRE

	2. IP Manager
	Customizing the Ruby SoC
	Modify the Bootloader

	3. Program the Board with the Ruby RTL Design
	About the Example Design
	Enable the On-Board 10 MHz Oscillator
	Installing USB Drivers
	Program the Development Board

	4. Simulate
	5. Launch Eclipse
	Set Global Environment Variables

	6. Create and Build a Software Project
	Create a New Project
	Import Project Settings (Optional)
	Enable Debugging
	Build

	7. Debug with the OpenOCD Debugger
	Import the Debug Configuration
	Debug

	8. Create Your Own RTL Design
	Target another FPGA
	Update the FTDI Driver for another Efinix Board
	Target Your Own Board
	Create a Custom AXI4 Slave Peripheral
	Create a Custom APB3 Peripheral
	Use another DDR DRAM Module (Trion Only)
	Use the I2C Interface for a Peripheral instead of DDR Calibration
	Remove Unused Peripherals from the RTL Design

	9. Create Your Own Software
	Deploying an Application Binary
	Boot from a Flash Device
	Boot from the OpenOCD Debugger
	Copy a User Binary to Flash (Efinity Programmer)
	Copy a User Binary to the Flash Device (2 Terminals)

	About the Board Specific Package
	Address Map
	Example Software
	blinkAndEcho Example
	dhrystone Example
	EfxAxi4Example Design
	axiInterruptDemo Design
	EfxApb3Example
	FreeRTOS Examples
	freertosUartInterruptDemo Example
	i2cDemo Example
	i2cSlaveDemo Design
	memTest Example
	readFlash Example
	spiDemo Example
	timerAndGpioInterruptDemo Example
	UartInterruptDemo Example
	userInterruptDemo Example
	writeFlash Example

	10. Using a UART Module
	Using the On-board UART (Titanium)
	Set Up a USB-to-UART Module (Trion)
	Open a Terminal
	Enable Telnet on Windows

	11. Using a Soft JTAG Core for Example Designs
	Enable Soft JTAG Support for the Example Design
	Modify the Interface Design
	Connect the FTDI Cable

	12. Troubleshooting
	Error 0x80010135: Path too long (Windows)
	OpenOCD Error: timed out while waiting for target halted
	Memory Test
	OpenOCD error code (-1073741515)
	OpenOCD Error: no device found
	OpenOCD Error: failed to reset FTDI device: LIBUSB_ERROR_IO
	OpenOCD Error: target 'fpga_spinal.cpu0' init failed
	Eclipse Fails to Launch with Exit Code 13
	Efinity® Debugger Crashes when using OpenOCD
	Undefined Reference to 'cosf'

	13. API Reference
	Control and Status Registers
	GPIO API Calls
	I2C API Calls
	I/O API Calls
	Machine Timer API Calls
	PLIC API Calls
	SPI API Calls
	SPI Flash Memory API Calls
	UART API Calls
	Handling Interrupts

	Revision History

