
TJ-Series PCIe® Controller User
Guide

UG-TiPCIe-v1.6
June 2025
www.elitestek.com

Copyright © 2025. All rights reserved. Elitestek and the Elitestek logo are trademarks of Elitestek Co., Ltd.. All other trademarks and service marks are the
property of their respective owners. All specifications subject to change without notice.

http://www.elitestek.com

TJ-Series PCIe Controller User Guide

Contents

Introduction.. 4

Features.. 5

Functional Description.. 6
Physical Layer...7

SRIS Operation.. 9
RX Lane Margining.. 9

Data Link Layer.. 20
Data Link Feature Exchange... 21
Aggregating ACK DLLPs... 22

Transaction Layer... 22
AXI Application Layer... 24

AXI Master Read Operation.. 25
AXI Master Write Operation...28
End-to-End Data Protection...31
Inbound Message Interface... 32
Ordering Between AXI Master Write and Read Channels.. 37
Inbound PCIe to AXI Address Translation (Root Port)..38
Inbound PCIe to AXI Address Translation (Endpoint)... 39
AXI Slave Interface.. 40
AXI Master and Slave Read/Write Length Limitations.. 57

Interrupt Interface..57
Legacy Interrupt Operation.. 57
MSI and MSI-X Interrupt Modes..58
Interrupt Sideband Signals...59

Clock Sources..61

Link Control..62
Link Up..62
Link Down and Reset... 62
Reset Types.. 63

Cold Reset... 63
Warm Reset... 63
Hot Reset... 63

Reset Handshake..63
Function-Level Reset (FLR)..64

Concurrent FLR Request in Multiple PFs/VFs.. 65
Reset During an FLR...66

Power Management... 66
Function Power States..66
L0s Power State... 66
L1 Power State... 67

Entering L1 via ASPM... 67
Entering L1 via PCI-PM...67
L1 Exit Triggers..68
L1 Register Programming..68
Blocking L1 Explicit Client Exit or Endpoint Entry...69

L1 Power Substates..69
Entering L1 Substate... 70
Exiting L1 Substate..70
L1.1 Operation... 71
L1.2 Operation... 72
L1 Substate Register Programming.. 75
Explicit Client Exit or Entry Block.. 76

www.elitestek.com

TJ-Series PCIe Controller User Guide

Integration Details.. 77
L2 Power State... 77

Entering L2...77
Wake Up or Exiting L2.. 78

Configuring Registers with the APB Interface...79

Configuration Snoop Interface...80

Vendor-Specific Extended Capability (VSEC)...82

Configuration Guide.. 84
AXI Outbound Access Example... 84
Accessing the Configuration TLP... 84

Method 1.. 84
Method 2.. 85

Programming the Outbound PCIe Descriptor Register.. 85
Address Translation.. 85
Memory or I/O TLP Access..86
Message TLP Access...87
Endpoint Autonomous Link Bandwidth Management...87
Programming the SR-IOV Registers.. 88

VF Function Number Allocation...88
Setting up the VF BAR Registers..89

Managing Outbound NP Outstanding Requests and Completion Responses (Endpoint).......................89

Interface Signals.. 92
Clock Signals.. 92
Reset Interface Signals...92
AXI Master Interface Signals..92
AXI Slave Interface Signals..97
Interrupt Interface Signals...100
Message Interface Signals... 102
Status and Error Indicator Signals... 102
Function-Level Reset Signals... 105
Configuration Snoop Interface Signals...105
Vendor Specific (VSEC) Interface Signals... 106
Power Management Interface Signals..107
L1 Interface Signals..109
L1 Substate Interface Signals.. 109
APB Interface Signals...110

Appendix A: Acronyms and Abbreviations..111

Appendix B: Error Handling...112
Non-Fatal Errors..112
Multiple Errors...115
Multiple-Error Scenarios..116

Appendix C: LTSSM State Encoding...117

Appendix D: PCIe Configuration Capabilities Linked List.. 119
Configuration-Specific Capabilities... 119

Appendix E: Supported Chipsets.. 122

Revision History...122

www.elitestek.com

TJ-Series PCIe Controller User Guide

Introduction
TJ-Series transceivers consist of a physical medium attachment (PMA) and a physical
coding sublayer (PCS). The PMA connects the FPGA to the lane, generates the required
clocks, and converts the data from parallel to serial or serial to parallel. The PCS contains
the digital processing interface between the PMA and the FPGA fabric. The PCS supports
SGMII, 10GBase-KR, and PCIe® Gen4 as well as PMA Direct. This user guide provides the
specifications for the PCIe Controller interface.

Figure 1: Transceiver Used for PCIe

PCIe
Controller

(x1, x2, x4)

Lane 0

PIPE
Lane 1

Lane 2

Lane 3

Core Transceiver

The following table shows the high-level controller configuration. It supports up to Gen4 x4,
which is equivalent to a 16 Gbps lane rate or up to 64 Gbps link bandwidth.

Table 1: PCIe Controller Configuration

Parameter Setting

Operational mode Endpoint or root port(1)

Link width x1, x2, x4

PIPE interface fMAX 500 MHz, Gen 4
250 MHz, Gen 3
125 MHz, Gen 2
62.5 MHz, Gen 1

PCIe Controller core clock(2) 500 MHz

FPGA user clock (AXI interface) fMAX
(3) 125 - 250 MHz

FPGA user data path width (AXI interface) 256 bits

AXI interface address width 64 bits

Power management clock fMAX 40 MHz

The PCIe Controller can be configured to be either endpoint (EP) or root port (RP) mode,
depending on your requirements. PCIe operations initiated by the user side are driven through

(1) Root port capabilities are limited in the Efinity® software v2024.1.
(2) The PCIe Controller core clock is an internal clock.
(3) This clock, AXI_CLK, is available to the user application

www.elitestek.com 4

TJ-Series PCIe Controller User Guide

the AXI4 slave port; PCIe operations initiated by the host side are driven through the AXI4
master port.

Figure 2: PCIe Controller Block Diagram

Lane 0

Lane 1

Lane 2

Lane 3

Ph
ys

ic
al

 L
ay

er

D
at

a
Li

nk
 L

ay
er

Tr
an

sa
ct

io
n

La
ye

rAXI
Application

Layer

PI
PE

 (P
C

S)

PM
A

AXI4 Slave
AXI4 Master

Interrupts
Messages

Debug

Configuration
RegistersAPB

SerDes

SerDes

SerDes

SerDes

PCIe Controller

Reset ControllerReset perst_n

Status and Error

Core Logic Reference clock

cfg_USER_STATUS

Note: Refer to Appendix A: Acronyms and Abbreviations on page 111 for terms used in this document.
Refer to "PCI Express Interface" in the TJ-Series Interfaces User Guide for configuration options.

Features
● Fully integrated PMA with PIPE interface and controller (consisting of the physical layer,

data link layer, and transaction layer)
● Programmable as endpoint (EP) or root port (RP)
● AXI4 slave interface port
● AXI4 master interface port
● Dedicated interrupt interface and inbound message interface supporting conventional

interrupts, MSI, and MSI-X
● Supports:

— Power management
— Function-level reset (FLR)
— SR-IOV
— Up to four physical functions; each physical function can support up to 16 virtual

functions
— Up to 64 virtual functions

● Advanced error reporting (AER)
● TLP processing hints (TPH)
● Steering tag

www.elitestek.com 5

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

TJ-Series PCIe Controller User Guide

Functional Description
The following figure shows a high-level overview of the PCIe Controller. This topic provides an
overview of the layers, which are described in detail later.

Figure 3: PCIe Controller High-Level Block Diagram

PIPE Interface

Transaction Layer

AXI Application Layer

AXI4 Slave
Read/Write
Interface

Configuration
Registers

AXI4 Master
Read/Write
Interface

Interrupt
Interface

Flow
Control

PNP Receive
FIFO RAM

Completion
 Receive

FIFO RAM

Data Link Layer

Link
State

Replay
Buffer
RAM

CRC
Check

Physical Layer
LTSSM

CRC
Generator

Physical Layer
On the physical layer's receive (RX) side, data arrives from the link over the PIPE interface. For
all link speeds, each lane is de-scrambled independently. The data from the lanes is de-skewed
to generate aligned data. The PCIe Controller decodes the aligned data and sends the packets
to the data link layer.

On the physical layer's transmit (TX) side, data arrives from the data link layer over a single
interface. The PCIe Controller formats the data into packets by appending SOP and EOP,
and aligns it on the outgoing lanes. For all link speeds, the data from each lane is scrambled
independently before being transmitted on the outgoing PIPE. The physical layer has one
instance of the Link Training and Status State Machine.

Data Link Layer
The data link layer receives packet data from the physical layer's RX. A CRC checker checks the
incoming packet LCRC. The PCIe Controller sends the LCRC-stripped data to the transaction
layer. A separate state machine performs the data link layer initialization.

On the TX side, the data link layer receives packets from the transaction layer over a 128-bit
data path. It then adds the LCRC to the packets, multiplexes them with other data link layer
packets (such as ACKs and flow control DLLPs), and forwards them to the physical layer.
The TX side of the data link layer also has the replay buffer that is required for re-transmitting
packets.

www.elitestek.com 6

TJ-Series PCIe Controller User Guide

Transaction Layer
At the transaction layer, data arrives on the RX side from the data link layer. The arriving packets
go into a receive FIFO buffer, and packet forwarding only begins when the FIFO buffer has a
complete packet. Packets are decoded and forwarded to the appropriate host interface, or to
an internal module (for example, interrupt messages). The host interfaces include separate
interfaces for posted/non-posted (PNP) and completion packets.

The TX side of the transaction layer receives data from the client logic through separate
interfaces for each type (posted/non-posted and completion). A state machine processes the
data, schedules the packets, and forwards them over a common data path to the data link layer.

AXI Application Layer
The application layer provides a simple interface to a host bus or DMA engine on the user side.
The application layer has three separate interfaces to the user logic:

● Target memory read/write interface—Provides a straightforward interface to the user
memory controller or DMA engine. This interface also delivers I/O requests and
messages received from the link to the client. EPs need this interface.

● Master read/write interface—Lets an EP generate memory transactions to the host as
bus master; an RP can generate memory, I/O, configuration, and message requests.
Devices that require bus master capability need this interface, e.g., all RPs and EPs that
have master capability.

● Interrupt interface—Communicates the interrupt state between the user application and
the PCIe Controller.

The application interface can maintain the state of up to 256 non-posted transactions (memory
reads, I/O reads and writes, configuration reads and writes) generated on the master side,
allowing their completions to be matched to the requests.

PCIe Controller Configuration
Many of the PCIe Controller's interfaces and features are user configurable with the Efinity
Interface Designer. The settings you make in the Interface Designer are the defaults that the
PCIe Controller uses when you power it up or perform a cold reset. You can also change many
of the settings via the APB interface (if you enable it).

Learn more: Refer to the TJ-Series Interfaces User Guide for a complete description of the settings you can configure with
the Interface Designer.

Physical Layer
Data arrives from the PIPE interface over one or more lanes. Each lane has a 32-bit interface
and a clock frequency of 62, 125, 250, or 500 MHz depending on the link speed. The data flow
happens as follows:

1. The data is converted to the core clock domain.
2. The PCIe Controller de-scrambles each lane's data independently.
3. Logic checks the data to detect any link power state transitions.
4. Tthe lanes are de-skewed using FIFOs that are aligned on SKP sequences. The lanes are

aligned as a single unit.

www.elitestek.com 7

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

TJ-Series PCIe Controller User Guide

Figure 4: RX PHY Layer

Descrambler

D
es

ke
w

Link State
Management

Link Training
RX State
Machine

Lane 0
Data

Descrambler Link State
Management

Link Training
RX State
Machine

Lane 1
Data

Descrambler Link State
Management

Link Training
RX State
Machine

Lane n
Data

To
LTSSM

Frame
Decoder Data to

Link Layer

A frame decoder decodes the de-skewed data, removes the SOP/EOP framing delimiters from
the packet, and aligns them on the internal data path. The frame decoder can handle varying link
widths and all potential packet alignments on the lanes. The decoded data is sent to the data link
layer with indicators for packet type and errors detected.

The PCIe Controller sends each lane's received data to the Link Training Receive State
Machine, which detects and decodes any training sequences from the lane. Each state machine
passes information extracted from the training sequences to the LTSSM.

On the TX side, data arrives from the data link layer over a 128-bit data path, plus sideband
signals. A frame decoder adds SOP and EOP delimiters to the packets and aligns them on the
lanes. The frame encoder can handle varying link widths and all legal packet alignments on the
lanes.

Figure 5: TX PHY Layer

Scrambler MultiplexerLane 0
Data

Scrambler MultiplexerLane 1
Data

Scrambler MultiplexerLane n
Data

Frame
Encoder

Data from
Link Layer

LTSSM
From RX
State
Machines

The PCIe Controller multiplexes outgoing packets from the frame encoder with training
sequences generated by the LTSSM. The multiplexer disables the data path from the frame
encoder during link training, and allows the LTSSM to control the lanes. Each lane has its own
scrambler to scramble the data before sending it to the PIPE interface. The outgoing PIPE
interface has 32 bits per lane for all speeds with a PIPE clock frequency of 62, 125, 250, or 500
MHz), which determines the link speed.

www.elitestek.com 8

TJ-Series PCIe Controller User Guide

SRIS Operation
The PCIe Controller supports the Separate Reference Clock Independent Spread Spectrum
(SRIS) ECN. With SRIS enabled, the PCIe Controller is in SRIS mode upon power-up and can
transmit and receive the SKP ordered set (OS) as required by the SRIS specifications.

Note: The SRIS feature enables a higher clock tolerance from 600 ppm to 5,600 ppm in a separate reference clock
configuration. Using an incompatible clock tolerance in your system may result in an unstable L0 state or packet timeout issues.
Refer to the PCIe Base Specification 3.0 or higher for more information.

In SRIS mode, the PCIe Controller transmits SKP OS (as per the SRIS and PCIe 3.0
specifications) as follows:

● In 8b/10b encoding mode, the PCIe Controller transmits SKP OS every 128 symbols.
If, due to a transmission of a large TLP, the SKP OS cannot be sent at the 128 symbol
boundary, the controller accumulates all SKP OS and sends them at the end of the TLP.

● In 128/130b encoding mode, the PCIe Controller transmits SKP OS every 32 blocks.
If, due to a transmission of a large TLP, the SKP OS cannot be sent at the 32 block
boundary, the controller accumulates the SKP OS and send them at the end of the TLP.

On the RX side, the PCIe Controller can handle the higher frequency SKP OS reception as
mandated by the SRIS specifications.

When SRIS mode is enabled, the following two features (as defined in the PCIe 3.0
specification) are changed:

● L0s capability is not advertised by the core in the link control register in PCI Express
capability structure in the PCI compatible configuration space.

● The modified compliance pattern at 8G or higher is different. See the SRIS ECN
specification for further details.

When the SRIS control register power-on default value is changed, the L0s capability in the Link
Control register should be updated accordingly via the Local Management/APB interface.

The SRIS specification has an optional feature called Lower SKP OS generation/reception. The
PCIe Controller implements this feature. With this feature, the PCIe device (if needed) can revert
to the non-SRIS frequency of SKP OS generation when the PCIe link is in the L0 mode. This
capability is advertised in the Lower SKP OS Generation/Reception Supported Speeds Vector
field of the Link Capabilities 2 register. This feature is enabled/disabled using the Enable Lower
SKP OS Generation Vector field of the Link Control 3 register.

When the SRIS feature is disabled using the SRIS control register, the Lower SKP OS
Generation/Reception Supported Speeds Vector field of the Link Capabilities 2 register is
disabled by forcing setting the value to zero.

Note: You can enable SRIS in the Interface Designer (PCI Express block > Base tab > SRIS Enable).
During operation, you can update the setting using the APB interface. As a control and debug feature, you can enable/
disable the SRIS feature using a control register in the local management space (refer to "SRIS Control Register" in the "Local
Management Registers" chapter of the TJ-Series PCIe Controller Registers User Guide). If you want to enable/disable SRIS
mode, set/reset the SRIS Enable register field before link training begins.

Important: You cannot enable SRIS if active state power management (ASPM) is enabled.

RX Lane Margining
The Receiver lane margining enables system software to obtain the receiver's margin
information while the link is in L0 state. The PCIe Controller:

● Supports RX lane margining for timing and voltage in either direction from the current
RX position.

● Supports RX lane margining in endpoint and root port modes.
● Supports RX lane margining for PHYs that implement an independent error sampler.

(i.e., MIndErrorSampler ==1). MIndErrorSampler==0 is not supported.
● Supports all lanes being margined simultaneously.

www.elitestek.com 9

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

TJ-Series PCIe Controller User Guide

● Supports PIPE interface revision 4.4.1 for margining.
● Implements programmable registers in the local management space for all PHY

parameters related to margining.
● Implements the Lane Margining Capability Register Set in the PF0 configuration space

at address offset 12'h920.
● Implements logic to detect and report invalid margining commands received from host

software and the PHY.

Lane margining is driven by software. Software uses the Lane Margin Control and Status
register in each port (downstream or upstream) for margin control and to obtain status
information for the corresponding RX associated with the port.

When the host writes a new margining command to the Lane Margin Control Register, the
PCIe Controller decodes the command and performs two checks to determine whether the
command is:

● Valid:
— Commands that do not match defined command formats are treated as invalid.
— If the received command is invalid, the PCIe Controller discards the command

and reports the error in LM register.

● Supported (step margin commands):
— Checks if the step margin offset is within the range supported by the device.
— If a step margin command is unsupported, the PCIe Controller responds with

NAK status in the Lane Margin Status Register. An error is not flagged in the LM
registers.

Note: Refer to Exception Handling on page 19 for more information on these checks.

The PCIe Controller then processes commands that are valid and supported. The
PCIe Controller internally executes commands that do not require any action from the PHY, such
as report commands. All other commands are delivered to the PHY over the PIPE interface.

The PCIe Controller responds to the host by updating the status appropriately in the Lane
Margin Status Register. The register format is:

Table 2: Margining Lane Control and Status Register (i_margining_lane_control_status_regX)

[31:24] [23] [22] [21:19] [18:16] [15:8] [7] [6] [5:3] [2:0]

MPSTS R1 UMSTS MTSTS RNSTS MRGPAY R0 USGMOD MRGTYP RCVNUM

Margin
Payload
Status

Reserved Usage
Model
Status

Margin
Type Status

RX Number
Status

Margin
Payload

Reserved Usage
Model

Margin
Type

RX Number

www.elitestek.com 10

TJ-Series PCIe Controller User Guide

Command Processing (Endpoint)
The following table shows how the PCIe Controller processes margining commands in endpoint
mode.

Table 3: Margining Command Processing in Endpoint Mode

Command (Margin Control Register) PIPE Interface Response (Margin Status Register)

No Command
Margin Type [2:0]: 111b
Receiver Number [2:0]: 000b
Margin Payload [7:0]: 9Ch

No change Margin Type [2:0]: 111b
Receiver Number [2:0]: 000b
Margin Payload [7:0]: 9Ch

Access Retimer Register
Margin Type [2:0]: 001b
Receiver Number [2:0]: 010b/100b
Margin Payload [7:0]: XXh

No change Invalid command for EP. Reported as an
invalid command in LM register.

Report Margin Control Capabilities
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 88h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:5]: 000b
Margin Payload [4:0]: {MIndErrorSampler,
MSampleReportingMethod,
MIndLeftRightTiming, MIndUpDownVoltage,
MVoltageSupported}

Report MNumVoltageSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 89h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]: MNumVoltageSteps

Report MNumTimingSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Ah

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 00
Margin Payload [5:0]: MNumTimingSteps

Report MMaxTimingOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Bh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]: MMaxTimingOffset

Report MMaxVoltageOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Ch

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]: MMaxVoltageOffset

Report MSamplingRateVoltage
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Dh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 00
Margin Payload [5:0]
= {MSamplingRateVoltage [5:0]}

Report MSamplingRateTiming
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Eh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
{MSamplingRateTiming [5:0]}

ReportMSampleCount
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 8Fh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7]: 0
Margin Payload [6:0]: MSampleCount

www.elitestek.com 11

TJ-Series PCIe Controller User Guide

Command (Margin Control Register) PIPE Interface Response (Margin Status Register)

ReportMMaxLanes
Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 90h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 110b
Margin Payload [7:5]: 00
Margin Payload [6:0]: MMaxLane

Set Error Count Limit
Margin Type [2:0]: 010b
Receiver Number [2:0]: 110b
Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error Count Limit

No change
Register Error Limit [5:0] in the Local
Management Register in the core clock domain.

Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error Count
Limit registered by the target receiver

Go to Normal Settings
Margin Type [2:0]: 010b
Receiver Number [2:0]: 000b or
110b
Margin Payload [7:0]: 0Fh

● Write committed to RX Margin Control
0 with Start Margin = 0.

● Wait for Write Ack response from PHY
or a 10 ms timeout.

● Wait for PHY2MAC write committed to
Margin Status or a 10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 0Fh

Clear Error Log
Margin Type [2:0]: 010b
Receiver Number [2:0]: 000b or
110b
Margin Payload [7:0]: 55h

● Write committed to RX Margin Control
0 with Error Count Reset = 1. Other
fields picked up from the RX Margin
Control 0 Mirror Register.

● Wait for Write Ack response from PHY
or a 10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: 55h

Step Margin to Timing Offset to
Right/Left of Default
Margin Type [2:0]: 011b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: XX

If a step margin to voltage is already in progress
or if a step margin to timing in the opposite
direction is in progress:

● Stop margining by issuing write
committed to RX Margin Control 0
with Start Margin = 0.

● Other fields picked up from the RX
Margin Control 0 Mirror Register.

● Wait for Write Ack response from PHY
or a 10 ms timeout.

● Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Check if RX margin command is supported.
If margin offset is supported:

● Issue Write Uncommitted to RX
Margin Control 1 with Margin Offset
[6:0] = Margin Payload [5:0].

● Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginTiming: 1.

● Wait for Write Ack response from PHY
or a 10ms timeout.

● Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Otherwise:
● Issue NAK Status and exit.

Margin Type [2:0]: 011b
Receiver Number [2:0]: 110b
IF (Unsupported Range in Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for Margin
Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count from RX
Margin Status 2 Register

www.elitestek.com 12

TJ-Series PCIe Controller User Guide

Command (Margin Control Register) PIPE Interface Response (Margin Status Register)

Step Margin to Voltage Offset to Up/
Down of Default
Margin Type [2:0]: 100b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: XX

If a step margin to timing is already in progress
or if a step margin to voltage in the opposite
direction is in progress:

● Stop Margining by issuing Write
Committed to RX Margin Control 0
with Start Margin = 0. Other fields
picked up from the RX Margin Control
0 Mirror Register.

● Wait for Write Ack response from PHY
or a 10ms timeout.

● Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Check if an RX margin command is valid.
If margin offset is supported:

● Issue Write Uncommitted to RX
Margin Control 1 with Margin Offset
[6:0] = Margin Payload [6:0].

● Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginVoltage: 1

● Wait for Write Ack response from PHY
or a 10ms timeout.

● Wait for PHY2MAC Write Committed
to Margin Status or a 10 ms timeout.

Otherwise:
● Issue NAK Status and exit.

Margin Type [2:0]: 100b
Receiver Number [2:0]: 110b
IF (Unsupported Range in Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for Margin
Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count
from RX Margin Status 2 Register

Vendor Defined
Margin Type [2:0]: 101b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: Vendor
Defined

No change Margin Type [2:0]: 101b
Receiver Number [2:0]: 110b
Margin Payload [7:0]: Vendor
Defined
Margin Payload status same as
received in control register.

Command Processing (Root Port)
The following table shows how the PCIe Controller processes margining commands in root port
mode.

Table 4: Command Processing in Roor Port Mode

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

No Command
Margin Type [2:0]: 111b
Receiver Number [2:0]: 000b
Margin Payload [7:0]: 9Ch

No change Margin Type [2:0]: 111b
Receiver Number [2:0]: 000b
Margin Payload [7:0]: 9Ch

Access Retimer Register
Margin Type [2:0]: 001b
Receiver Number [2:0]: 010b/100b
Margin Payload [7:0]: XXh

No change Command sent on Control SKP sent by
downstream port.
Margin Status Updated from the Control
SKP OS received by the downstream port.

Report Margin Control
Capabilities
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 88h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:5]: 000b
Margin Payload [4:0]: {MIndErrorSampler,
MSampleReportingMethod,
MIndLeftRightTiming, MIndUpDownVoltage,
MVoltageSupported}

www.elitestek.com 13

TJ-Series PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Report MNumVoltageSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 89h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]: MNumVoltageSteps

Report MNumTimingSteps
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: 8Ah

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 00
Margin Payload [5:0]: MNumTimingSteps

Report MMaxTimingOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 8Bh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]: MMaxTimingOffset

Report MMaxVoltageOffset
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 8Ch

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]: MMaxVoltageOffset

Report MSamplingRateVoltage
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 8Dh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
{MSamplingRateVoltage [5:0]}

Report MSamplingRateTiming
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 8Eh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 00
Margin Payload [5:0]:
{MSamplingRateTiming [5:0]}

ReportMSampleCount
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 8Fh

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7]: 0
Margin Payload [6:0]: MSampleCount

ReportMMaxLanes
Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: 90h

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:5]: 00
Margin Payload [6:0]: MMaxLane

Set Error Count Limit
Margin Type [2:0]: 010b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error Count
Limit

No change Margin Type [2:0]: 001b
Receiver Number [2:0]: 001b
Margin Payload [7:6]: 11b
Margin Payload [5:0]: Error Count Limit
registered by the target Receiver

Go to Normal Settings
Margin Type [2:0]: 010b
Receiver Number [2:0]: 000b
through 101b
Margin Payload [7:0]: 0Fh

● Write Committed to RX Margin Control 0
with Start Margin = 0.

● Wait for Write Ack response from PHY or a
10 ms timeout.

● Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: 0Fh

www.elitestek.com 14

TJ-Series PCIe Controller User Guide

Command (Margin
Control Register)

PIPE Interface Response (Margin Status Register)

Clear Error Log
Margin Type [2:0]: 010b
Receiver Number [2:0]: 000b
through 101b
Margin Payload [7:0]: 55h

● Write Committed to RX Margin Control 0
with Error Count Reset = 1. Other fields
picked up from the RX Margin Control 0
Mirror Register.

● Wait for Write Ack response from PHY or a
10 ms timeout.

Margin Type [2:0]: 010b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: 55h

Step Margin to Timing Offset to
Right/Left of Default
Margin Type [2:0]: 011b
Receiver Number [2:0]: 001b
through 101b
Margin Payload [7:0]: XX

If a step margin to voltage is already in progress or if
a step margin to timing in the opposite direction is in
progress:

● Stop Margining by issuing Write
Committed to RX Margin Control 0 with
Start Margin = 0. Other fields picked
up from the RX Margin Control 0 Mirror
Register.

● Wait for Write Ack response from PHY or a
10 ms timeout.

● Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Check if RX margin command is supported.
If margin offset is supported:

● Issue Write Uncommitted to RX Margin
Control 1 with Margin Offset [6:0] = Margin
Payload [5:0].

● Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginTiming: 1.

● Wait for Write Ack response from PHY or a
10 ms timeout.

● Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Otherwise:
● Issue NAK Status and exit.

Margin Type [2:0]: 011b
Receiver Number [2:0]: 001b
IF (Unsupported Range in Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for Margin
Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count
from RX Margin Status 2 Register

Step Margin to Voltage Offset to
Up/Down of Default
Margin Type [2:0]: 100b
Receiver Number [2:0]: 001b
through 110b
Margin Payload [7:0]: XX

If a step margin to timing is already in
progress or if a step margin to voltage in the opposite
direction is in progress:

● Stop Margining by issuing Write
Committed to RX Margin Control 0 with
Start Margin = 0. Other fields picked
up from the RX Margin Control 0 Mirror
Register.

● Wait for Write Ack response from PHY or a
10 ms timeout.

● Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Check if RX margin command is valid.
If margin offset is supported:

● Issue Write Uncommitted to RX Margin
Control 1 with Margin Offset [6:0] = Margin
Payload [6:0].

● Issue Write Committed to RX Margin
Control 0 with StartMargin: 1 and
MarginVoltage: 1

● Wait for Write Ack response from PHY or a
10 ms timeout.

● Wait for PHY2MAC Write Committed to
Margin Status or a 10 ms timeout.

Otherwsie:
● Issue NAK Status and exit.

Margin Type [2:0]: 100b
Receiver Number [2:0]: 001b
IF (Unsupported Range in Command)
Margin Payload [7:6]: 11
ELSIF (Write ACK received for Margin
Command)
Margin Payload [7:6]: 01
ELSIF (PIPE MAC RX Margin Register
0 Margin Status)
Margin Payload [7:6]: 10
ELSIF (Error Count > Limit)
Margin Payload [7:6]: 00
Margin Payload [5:0]: Error Count
from RX Margin Status 2 Register

Vendor Defined
Margin Type [2:0]: 101b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: Vendor
Defined

No change Margin Type [2:0]: 101b
Receiver Number [2:0]: 001b
Margin Payload [7:0]: Vendor Defined
Margin Payload status same as
received in control register.

www.elitestek.com 15

TJ-Series PCIe Controller User Guide

Step Margin Command Execution

Figure 6: Step Margin for Timing Command Execution

Step Margin Timing
Command Received

Errors found in
Command format?

Step Margin Voltage
operation in progress Or
Step Timing operation in

Opposite direction in
progress?

Log Error in LM
Register and wait for

next command

Stop Margining.Issue
Write_Committed to

RxMarginControl0 Register
with StartMargin==0

Write_ack And Margin
Status Pulse

Received from PHY

Log Error in LM
Register and wait
for next commandRespond with NAK

Status and wait for
next command

Margin Payload[5:0] >
MNumTimingSteps?

Issue Write_Committed to
RxMarginControl0 Register with
StartMargin=1 and MarginTiming

Write_ack
Received from PHY?

Respond with “Setup In Progress”
Status and wait for next update
from PHY or a new command

Margin Status Pulse
Received from PHY?

Log Error in LM
Register and wait
for next command

Respond with “Margin In
Progress” Status and

wait for next update from
PHY or a new command

Log Error in LM
Register and wait
for next command

Respond with “Too
Many Errors” Status

and wait for next
update from PHY or

a new command

Margin Status Pulse
Received from PHY?

Write_ack
Received from PHY?

GoToNormal
Settings Received

Error Count >
Error Limit?

10 ms Timeout

10 ms Timeout

10 ms Timeout

yes

yes

yes

yes

no

no

no

no

no

no

10 ms Timeout

10 ms Timeout

no

no

yes

yes yes

yes

A

A

www.elitestek.com 16

TJ-Series PCIe Controller User Guide

Figure 7: Step Margin for Voltage Command Execution

Step Margin Voltage
Command Received

Errors found in
Command format?

Step Margin Timing
operation in progress Or
Step Voltage operation in

Opposite direction in
progress?

Log Error in LM
Register and wait for

next command

Stop Margining.Issue
Write_Committed to

RxMarginControl0 Register
with StartMargin==0

Write_ack And Margin
Status Pulse

Received from PHY

Log Error in LM
Register and wait
for next commandRespond with NAK

Status and wait for
next command

Margin Payload[6:0] >
MNumTimingSteps

Issue Write_Committed to
RxMarginControl0 Register with

StartMargin=1 and MarginVoltage

Write_ack
Received from PHY

Respond with “Setup In Progress”
Status and wait for next update
from PHY or a new command.

Margin Status Pulse
Received from PHY

Log Error in LM
Register and wait
for next command

Respond with “Margin In
Progress” Status and

wait for next update from
PHY or a new command.

Log Error in LM
Register and wait
for next command

Respond with “Too
Many Errors” Status

and wait for next
update from PHY or

a new command.

Margin Status Pulse
Received from PHY

Write_ack
Received from PHY

GoToNormalSettings
Received

Error Count >
Error Limit

10 ms Timeout

10 ms Timeout

10 ms Timeout

yes

yes

yes

yes

no

no

no

no

no

no

10 ms Timeout

10 ms Timeout

no

no

yes

yes yes

yes

www.elitestek.com 17

TJ-Series PCIe Controller User Guide

Step Margin Execution Status
The step margin execution status is updated when a write committed is received from the PHY.
The 2-bit status is derived as shown in the following table.

Table 5: Step Margin Status

Inputs Step Margin
Execution

Status [1:0]

Description

PHY issues Write_Ack in response to a write committed
by the PCIe Controller to start margining.

01 01b: Set up for margin in progress. The receiver is
getting ready but has not yet started executing the step
margin command. MErrorCount is 0.

PHY sets the Margin Status bit in RX Margin Status 0
PIPE MAC Register in response to a write committed by
the PCIe Controller to start margining.

10 10b: Margining in progress. The receiver is executing
the step margin command. MErrorCount reflects the
number of errors detected.

PHY sets the margin NAK bit in the RX Margin Status 0
PIPE MAC Register in response to a write committed by
the PCIe Controller to start margining.

11 11b: NAK. Indicates that an unsupported lane margining
command was issued. For example, timing margin
beyond +/- 0.2 UI. MErrorCount is 0.

PHY updates error count bits [5:0] by issuing a write
committed to the MAC RX Margin Status 2 Register.
When error count bits [5:0] is greater than error
limit[5:0], update execution status.

00 00b: Too many errors. The receiver autonomously went
back to its default settings. MErrorCount reflects the
number of errors detected. Note that MErrorCount might
be greater than the error count limit.

Control SKIP for Lane Margining at Receiver
The Step Margin Execution Status is updated when write committed is received from the PHY.
The 2-bit status is derived as shown in the following tables.

Table 6: Control SKP Ordered Set Format

Where N is 1 - 5.

Symbol Number Value Description

0 through (4*N - 1) AAh SKP Symbol. Symbol 0 is the SKP Ordered Set identifier.

4*N 78h SKP_END_CTL Symbol. Signifies the end of the Control SKP Ordered Set after three
more symbols.

4*N + 1 00-FFh Bit 7: Data Parity
Bit 6: First Retimer Data Parity
Bit 5: Second Retimer Parity
Bits [4:0]: Margin CRC [4:0]

4*N + 2 00-FFh Bit 7: Margin Parity
Bit 6: Usage Model : Set to 0b to indicate RX Lane Margining
Bit [5:3]: Margin Type
Bits [2:0]: Receiver Number

4*N + 3 00-FFh Bits [7:0] : Margin Payload

Table 7: Control SKP during Root Port and Endpoint Mode

Types Root Port Mode Endpoint Mode

Control SKP TX The contents of the four control fields of the Lane Margin Control
and Status Register in the downstream port are always shown in the
identical fields in the transmitted Control SKP Ordered Sets.

The Control SKIP is always transmitted
with No Command.

www.elitestek.com 18

TJ-Series PCIe Controller User Guide

Types Root Port Mode Endpoint Mode

Control SKP RX The PCIe Controller checks the Margin CRC and Margin Parity in
the received Control SKIP Ordered Sets. Any mismatch detected is
reported in the Lane Error Status Register.
The contents of the Control SKP Ordered Set received in the
downstream port is reflected in the corresponding status fields of the
Lane Margin Control and Status Register in the downstream port if
either of these conditions are met in the Lane Margin Control and
Status Register:

● Receiver number is 010b - 101b.
● Receiver number is 000b, margin command is clear, rrror

log is no command or Go to Normal Settings, and there
are retimer(s) in the link.

The PCIe Controller checks the margin
CRC and margin parity in the received
Control SKIP Ordered Sets. Detected
mismatches are reported in the Lane
Error Status Register.
The contents of the Control SKIP
Ordered Sets are ignored in endpoint
mode.

Exception Handling
When host software writes a command into the PCIe Controller's Lane Margin Control Register,
the PCIe Controller performs a Command Valid Check and a Command Supported Check.

Command Valid Check

The PCIe Controller checks for errors in the Margining Lane Control Register. Commands
that do not match any defined formats are treated as invalid. If the host software writes an
invalid command to the register, the PCIe Controller detects and reports the error in the Local
Management Register Margining Error Status 1 Register.

The PCIe Controller logs the first error and sets the error status bit. The software must clear
this status bit needs before another error can be logged. PCIe Controller continues to accept
subsequent commands written by software in the Margining Lane Control Register regardless of
previous errors.

Table 8: Valid Commands for EndPoint Mode

Any other commands are considered invalid.

Margin Command Margin Type[2:0] Receiver Number[2:0] Margin Payload[7:0]

No Command 111 000 9Ch

Report 001 110 88h to 90h

SetErrorCountLimit 010 110 {11xx_xxxx}

GoToNormalSettings 010 000, 110 0Fh

ClearErrorLog 010 000, 110 55h

StepMarginTimingOffset 011 110 {xxxx_xxxx}

StepMarginVoltageOffset 100 110 {xxxx_xxxx}

VendorDefined 101 110 {xxxx_xxxx}

Table 9: Valid Commands for Root Port Mode

Any other commands are considered invalid.

Margin Command Margin Type[2:0] Receiver Number[2:0] Margin Payload[7:0]

No Command 111 000 9Ch

Access Retimer 001 010, 100 {xxxx_xxxx}

Report 001 001 through 101 88h to 90h

SetErrorCountLimit 010 001 through 101 {11xx_xxxx}

GoToNormalSettings 010 000 through 101 0Fh

ClearErrorLog 010 000 through 101 55h

StepMarginTimingOffset 011 001 through 101 {xxxx_xxxx}

StepMarginVoltageOffset 100 001 through 101 {xxxx_xxxx}

www.elitestek.com 19

TJ-Series PCIe Controller User Guide

Margin Command Margin Type[2:0] Receiver Number[2:0] Margin Payload[7:0]

VendorDefined 101 001 through 101 {xxxx_xxxx}

Command Supported Check

The PCIe Controller performs this check for Step Margin commands. When it receives a valid
Step Margin command, the PCIe Controller further checks whether the Step Margin Offset is
within the supported range. If a Step Margin command is unsupported, the PCIe Controller
responds with NAK status in the Lane Margin Status Register. No error is flagged in LM registers
in this case.

● The Step Margin Timing check is: Check Margin Payload[5:0] <= MNumTimingSteps
● The Step Margin Voltage check is: Check Margin Payload[6:0] <= MNumVoltageSteps

RX Margining PIPE Interface: Write Ack Timeout

During the execution of the GoToNormalSettings, ClearErrorLog, StepMarginTimingOffset or
StepMarginVoltageOffset commands, the PCIe Controller issues a write committed command to
the PHY over the PIPE interface and waits for the PHY to respond with WriteAck.

PCIe Controller waits for 10 ms to receive a WriteAck. If it is not received, the PCIe Controller
reports an error in the Local Management Register Margining Error Status 2 Register.

Link Transition from Gen4 L0 State

The PCIe Controller only accepts margining commands when the link is in Gen4 L0 state. After
the command is accepted, the PCIe Controller continues processing the command as long as
the link remains in the Gen4 L0 or Recovery states.

While a margining command is being processed, if the link transitions out of the Gen4 L0 or
Recovery states, the PCIe Controller:

● Terminates all margining commands in progress.
● Resets all state machines related to RX Lane Margining to their default states.
● Resets all PIPE MAC registers, defined for RX Lane Margining, to their default values.
● Leaves the margining status in Lane Margin Control and Status Register at the last valid

status just before the link state transition.

Data Link Layer
On the RX side, the data from the link passes through a decoder state machine for each link.
The decoders verify the packet integrity by matching the received CRC with the generated CRC,
and comparing their sequence numbers with the expected values (for TLPs). There is a separate
CRC module for TLPs (32-bit CRC) and DLLPs (16-bit CRC).

Figure 8: RX Data Link Layer

Packet DecoderFrom PHY
Layer

ACK/NAK Processing

ACK/NAK Generation

Data to Transaction Layer

To TX Link Layer

To TX Link Layer

The packet decoder extracts the sequence number, CRC check, and strips the CRC.

After comparing and removing the link-layer CRC, the DLLP decoders pass the received packet
to its target module based on the packet type. The DLLP decoders pass all TLPs they receive
onto the the transaction layer (after first removing their sequence number and LCRC fields). The
PCIe Controller processes data link layer acknowledgements (ACKs and NAKs) within the data
link layer itself, and sends credit DLLPs to the flow control module.

After the CRC check, the PCIe Controller sends arriving data link layer acknowledgements to
the transmit side for processing. Logic on the transmit side matches the acknowledgements with
outstanding packets and handles any errors.

www.elitestek.com 20

TJ-Series PCIe Controller User Guide

The receive side also generates acknowledgements (ACKs and NAKs) for the received TLPs.
The PCIe Controller sends these packets to the transmit side where they are multiplexed with
outgoing TLPs.

Figure 9: TX Data Link Layer

TLP Encoder

Replay BufferMultiplexer/
Arbiter

Data from Transaction Layer

ACKs from RX Link Layer

From RX ACK/NAK Generator

Credit DLLPs from
Flow Control Module

To PHY
Layer

The TLP encoder adds the sequence number and CRC.

On the TX side, the PCIe Controller formats the received transaction layer data for transmission
to the physical layer by inserting a sequence number and CRC. The PCIe Controller multiplexes
the formatted TLPs with other outgoing DL packets—such as ACKs, NAKs, and credit packets—
and sends them to the physical layer over a data path shared by both links.

The TX side also contains the replay buffer associated with the link. The reply buffer is
responsible for re-transmitting packets when needed and uses an external single-port RAM for
storing the packets. There is also an internal pointer RAM for keeping track of packets stored in
the replay buffer.

The data link layer also generates power management DLLPs to facilitate transitions of the link
to the L1 and L2 states.

Data Link Feature Exchange
The PCIe Controller supports the data link feature exchange as per the PCI Express Base 4
specification. You enable/disable this feature by programming the DL Feature Exchange Enable
bit in the dl_feature_capabilities_reg Configuration register. When enabled, the PCIe Controller's
Data Link Control and Management State Machine enters the DL_Feature state from the
DL_Inactive state after the LTSSM is in L0. In the DL_Feature state, the PCIe Controller
transmits data link feature DLLPs continuously. It does not transmit any other TLPs or DLLPs in
this state.

The PCIe Controller transitions from the DL_Feature state to the DL_Init state when a DL
Feature DLLP is received with the feature Ack bit set. If the remote end device does not support
DL Feature Exchange, the PCIe Controller transitions from the DL_Feature state to the DL_Init
State when it receives a a InitFC1 DLLP.

The PCIe Controller supports the Scaled Flow Control Data Link features as described in the
following topics.

RX Scaled Flow Control
The PCIe Controller advertises the maximum available header and payload credit limits for
posted, non-posted, and completion RX buffers. When scaled flow control is activated, the
PCIe Controller advertises a scale factor of 01 by default.

The firmware can:
● Override the scale and limit values prior to link training.
● Program the scale factor in the Local Management DL Layer flow control scaling

management Register.
● Program the limit value in the Local Management Receive Credit Limit Register 0/1.

Additionally, the firmware must ensure that the programmed values do not exceed the maximum
credits that were present upon reset.

www.elitestek.com 21

TJ-Series PCIe Controller User Guide

If Flow Control Scaling is not activated during DL Feature Exchange, the PCIe Controller
overrides the programmed scale factor with 00. The programmed credit values are adjusted to
the scale factor of 00.

TX Scaled Flow Control
The PCIe Controller captures the current posted, non-posted, and completion limit values
received in the INIT_FC and UPDATE_FC DLLPs.

Firmware can read:
● Received credit limit in Local Management Transmit Credit Limit Register 0/1
● Received credit scale factors in the Local Management DL Layer flow control scaling

management register

TX Flow Control Error Handling
The PCIe Controller detects the following errors and reports them as flow control protocol errors:

● An RX that does not support scaled flow control must never cumulatively issue more
than 2,047 data payload outstanding unused credits to the TX or 127 unused header
credits. Additionally The RX must never cumulatively issue more outstanding unused
data or headers to the TX than the maximum credit values based on the scaled flow
control scaling factors. The PCIe Controller checks for violations of this rule and reports
a Flow Control Protocol Error (FCPE).

● If scaled flow control is activated for a virtual channel, the HdrScale and DataScale
fields in the UpdateFCs must match the values advertised during initialization. The
PCIe Controller checks for violations of this rule and reports a Flow Control Protocol
Error (FCPE).

The PCIe Controller does not support infinite credit advertisement.

Aggregating ACK DLLPs
The PCIe Controller supports ACK aggregation in certain conditions:

● Typically, the PCIe Controller schedules one ACK DLLP for transmission for each TLP
that it receives.

● If the TX is idle, it transmits an ACK DLLP immediately. However, if the TX is busy with a
TLP transmission, the ACK DLLP waits till the ongoing TLP is completely transmitted.

● While the ACK DLLP is waiting for transmission, if the TX receives another TLP, the
PCIe Controller aggregates the two pending ACK DLLPs into a single ACK DLLP with
the higher sequence number.

Transaction Layer
On the RX side, data arrives from the data link layer over a 128-bit data path. Logic in the
transaction layer decodes the packet header, performs ECRC check when the packet has a
TLP digest, and aligns the payload on the data path. The data then goes through store-and-

www.elitestek.com 22

TJ-Series PCIe Controller User Guide

forward FIFO buffers. The PCIe Controller has separate FIFO buffers for posted, non-posted,
and completion packets.

Figure 10: RX Transaction Layer

PNP RX
FIFO

PNP
Interface

From Link
Layer Completion

RX FIFO
Completion

Interface

Data to
Configuration

Module

ECRC Check
Header Extraction
Payload Alignment

Error Check

Configuration
Request

Processing

Interrupt
Processing

Configuration
Registers

Local
Management

Registers

Local Management
Bus Interface

Interrupt
Interface

Local
Management

Interface

To Host PNP
RX Interface

To Host SC
RX Interface

32-, 64-, 128-, or
256-bit Data plus
128-bit Header

The PCIe Controller only reads a packet from the FIFO when the entire packet has been
received. The decoding logic classifies packets based on their TLP header and forwards them to
the appropriate modules.

The PCIe Controller processes all read/write requests to configuration registers within the
transaction layer, which routes these requests to the register set of the function addressed by
the request, and returns completion packets back to the link. All interrupt-related messages are
processed by a separate interrupt processing module, which controls the interrupt interface. An
error handling module processes error messages.

The RX flow control parameters (payload and header credit for posted, non- posted, and
completion) are set based on the available space in the receive FIFO buffers. The flow control
protocol ensures that the FIFO buffers do not overflow. The FIFO buffers communicate their
state to the flow control module so that when the packet is forwarded out of the FIFO buffers, the
corresponding credit becomes available and can be advertised to the link.

In the TX side of the transaction layer, PNP requests and completion (SC) packets arrive from
the host over separate interfaces. The transaction layer multiplexes the packets, inserts the TLP
header (and optionally the ECRC) and forwards them to the data link layer. The completions and
messages generated are multiplexed on the same data path to the data link layer.

Figure 11: TX Transaction Layer

To Link
Layer

TX
Scheduler

Interrupt
Message
Generator

Interrupt
Interface

From Host PNP
TX Interface

From Host SC
TX Interface

32-, 64-, 128-, or
256-bit Data plus
128-bit Header

TLP Formation
ECRC Insertion

Ready for PNP
Ready for SC

Consumed Credit to
TX Flow Control Module

Credit from TX Flow
Control Module

www.elitestek.com 23

TJ-Series PCIe Controller User Guide

AXI Application Layer
The application layer provides an AXI interface (that conforms to the AMBA AXI protocol) to the
client application. This feature lets you use AXI signals to communicate with the PCIe Controller
instead of having to use PCIe protocols. The AXI interface has:

● An AXI master read/write interface that connects to a memory controller or DMA engine.
This interface is needed for all endpoints, and for root ports that allow endpoints to
access their memory space. All AXI master interface signals in the core start with the
prefix TARGET_AXI (see AXI Master Interface Signals on page 92).

● An AXI slave read/write interface that enables the endpoint or root port to generate
memory transactions to the link partner as bus master. This interface is required for root
ports. It is only required for endpoints that need bus master capability (see AXI Slave
Interface Signals on page 97).

● An interface to signals received messages from the PCIe link.

Figure 12: AXI Modules

TLPs from
Transaction

Layer

TX
Scheduler

AXI Master
Read/Write
Interface

AXI Slave
Read/Write
InterfaceMessages

Completion Data

Memory, I/O, Configuration
and Message Requests

Header
Decoder

Memory Requests
I/O Requests
Messages
Completions

AXI Master
Interface

AXI Slave
Interface

Split
Completion

Table

AER and Power
Management

Message
Generation

TLPs to
Transaction

Layer

AXI
Wrapper

The PCIe Controller first decodes TLPs arriving from the transaction layer into memory requests,
I/O requests, messages, and completion packets. Configuration requests are forwarded to the
configuration module. The PCIe Controller sends decoded requests to the AXI master interface.
The PCIe Controller performs write operations as indivisible operations (that is, address followed
by data). Read operations allow delayed completions, thus allowing the address and data
phases of multiple transactions to be interleaved.

With the AXI slave interface, the client can perform DMA reads and writes to the link partner's
memory space, acting as a PCI master (this capability is required for root ports, and optional for
endpoints). In root port, the the client application also uses the AXI slave interface to transmit
I/O and configuration requests on the link. The AXI slave interface receives the client request
and its associated parameters from the client application. If the transaction is a memory write or
message operation, the AXI slave interface constructs a TLP containing the data to be written,
and sends it to the transaction layer for delivery to the PCIe link. The core maintains no state for
these posted transactions.

If the transaction is a non-posted transaction—memory read, I/O read, I/O write, configuration
read, or configuration write—the AXI slave interface module forwards the request to the
transaction layer and records the request parameters in the completion state memory (or
split completion table). The PCIe Controller permits storage for the state of up to 256 pending
transactions in the split completion table. When the corresponding completion TLP is received
from the transaction layer, the AXI slave interface module matches it with the request and

www.elitestek.com 24

TJ-Series PCIe Controller User Guide

forwards the data to the application over the AXI slave interface. The AXI slave interface also
handles completion timeouts by removing the transaction state from the completion state
memory and signaling to the client using a dummy response across the AXI slave interface.

AXI Master Read Operation
An AXI read is a split transaction with independent address and data signals associated with
the corresponding channels. That is, the client application can return the data for the read later.
When the data for a read request becomes available, the client application transfers it using the
AXI master read data channel signals. The client must send back all of the requested data in
one single burst transaction.

The client must follow the slave protocol for the read address and data channel as described in
the AXI Specification v1.0. The PCIe Controller follows the master protocol for the read address
and data channel as described in the AXI specification v1.0.

Note: Refer to AXI Master Interface Signals on page 92 for the signal descriptions.

Figure 13: AXI Master Read Waveform

Response Code

Transaction ID

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

TARGET_AXI_ARADDR

TARGET_AXI_ARVALID

TARGET_AXI_ARREADY

TARGET_AXI_ARLEN

TARGET_AXI_ARSIZE

TARGET_AXI_ARID

TARGET_AXI_RVALID

TARGET_AXI_RDATA

TARGET_AXI_RREADY

TARGET_AXI_RLAST

TARGET_AXI_RID

TARGET_AXI_RRESP

The read operation starts by placing the parameters associated with the read request
on the AXI master's read address channel signals. The read address channel signals
are ready the TARGET_AXI_ARVALID signal is asserted. The starting read address
is in on TARGET_AXI_ARADDR. The client logic accepts the requests when it asserts
TARGET_AXI_ARREADY. The PCIe Controller maintains the request and its associated
descriptor until it receives acknowledgement from the client.

The client initiates a read data transfer by asserting TARGET_AXI_RVALID and placing the
data aligned to the request address on TARGET_AXI_RDATA. The alignment requirement
is only for the first cycle of the burst transfer. Subsequent data transfer should have valid
data from the least significant byte. The client should flag the last data transfer cycle by
asserting TARGET_AXI_RLAST. The PCIe Controller may pace the data transfer by asserting
TARGET_AXI_RREADY; in this case the client should hold the each data cycle on the
TARGET_AXI_RDATA bus until the PCIe Controller asserts the ready signal.

If the inbound TLP length is greater than the maximum AXI burst size, the PCIe Controller splits
the PCIe transaction into multiple AXI read transactions with the same TARGET_AXI_ARID.
This process ensures that read data coming back for the read requests are in order. The
PCIe Controller issues multiple split completions back to the requester on receipt of every read
data from the AXI interface.

Note: The AXI master interface does not support read data interleaving.

www.elitestek.com 25

TJ-Series PCIe Controller User Guide

TLP (2 bytes, Aligned Address)
For TLP read of lengths (2n up to 32 bytes), which are naturally aligned to the 256 bit AXI data
bus, the PCIe Controller issues a single cycle burst request and controls TARGET_AXI_ARSIZE
accordingly to read the exact amount of data from the AXI sub-system.

TLP (2n and 2n>1, up to 32 Bytes, Unaligned Address)
A TLP read of lengths 2n and 2n>1 up to 32 bytes, with an un-aligned address results in a read
on the AXI sub-system that is greater than the number of bytes requested in the TLP. Due to
the address alignment, the PCIe Controller nay read a few extra bytes from the aligned starting
address lower than the unaligned address. Additionally, a few extra bytes are read beyond the
intended bytes.

Note: The client should ensure that the extra reads from the sub-system does not cause undesirable side effects.

Table 10: TLP Read Lengths 2n and 2n>1 up to 32 bytes, Unaligned Address

TLP Parameter AXI Read Address Channel

Addr[4:0] (Hex) Length in Bytes (Decimal) Addr[4:0] (Hex) ARSIZE (Binary) ARLEN (Hex)

0x5 2 0x5 010 0x0

0x3 2 0x3 011 0x0

0x1 4 0x1 011 0x0

0x7 4 0x7 100 0x0

0x2 8 0x2 100 0x0

0x4 16 0x4 101 0x0

0x12 16 0x12 101 0x1

0x1 32 0x1 101 0x1

Example: Unaligned Address Read 1

Condition:

Address = 0x5

ARSIZE = 2 (32 bit width)

ARLEN = 0

Byte Request = 2

Addr

Byte 1 Byte 0

31 23 15 724 16 8 0

1st Transfer

0x7 0x6 0x5 0x4

www.elitestek.com 26

TJ-Series PCIe Controller User Guide

Example: Unaligned Address Read 2

Condition:

Address = 0x12

ARSIZE = 5 (256 bit width)

ARLEN = 1

Byte Request = 16

1st Transfer

2nd Transfer

15 78 0

Byte 14Byte 15

...Byte 13 Byte 0

255 ~ 151248 144 ~

Addr 0x1F ~ 0x12 ~ 0x1 0x0

TLP (Other, up to 32 Bytes)

Table 11: TLP Read of Other Lengths up to 32 Bytes

TLP Parameter AXI Read Address Channel

Addr[4:0] (Hex) Length in Bytes (Decimal) Addr[4:0] (Hex) ARSIZE (Binary) ARLEN (Hex)

0x0 5 0x0 011 0x0

0x1 3 0x1 010 0x0

0x2 3 0x2 011 0x0

0x3 5 0x3 011 0x0

0x5 7 0x5 100 0x0

0x4 18 0x4 101 0x0

0x1A 30 0x1A 101 0x1

TLP Read of Lengths > 32 Bytes

Table 12: TLP Read of Lengths > 32 Bytes

TLP Parameter AXI Read Address Channel

Addr[4:0] (Hex) Length in Bytes (Decimal) Addr[4:0] (Hex) ARSIZE (Binary) ARLEN (Hex)

0x1 34 0x1 101 0x1

0x5 50 0x5 101 0x1

0x1E 72 0x1E 101 0x3

Error Handling
During read data transfers, the client can indicate read data errors by asserting
TARGET_AXI_RRESP to an error code (i.e., SLVERR or DECERR) on any valid data transfer
cycle. The PCIe Controller sends a completer abort completion status back to the requester. The
client must not do an early burst termination and transfer all the data cycles as indicated by the
TARGET_AXI_ARLEN signal during the request cycle.

AXI ID Handling
The PCIe Controller can place outstanding read requests on the AXI master read channel. That
is, the PCIe Controller might place subsequent read requests before the read data of a previous
request has come back. At any point, the PCIe Controller has no more than 32 outstanding read
requests on the AXI master read interface for link 0 and link 1. The PCIe Controller ensures that
each outstanding read request has a unique TARGET_AXI_ARID so that the client can send
back data for the outstanding read requests in any order, as per the AXI ordering rules. The

www.elitestek.com 27

TJ-Series PCIe Controller User Guide

PCIe Controller keeps a table that maps inbound outstanding PCIe tags to the outstanding AXI
master read requests IDs.

When the client returns read data for a particular ID, the PCIe Controller does an internal lookup
to find the corresponding PCIe tag and forms an appropriate completion TLP to be sent on to the
link.

Note: Although the PCIe Controller issues outstanding read requests with unique TARGET_AXI_ARID, it expects the client to
return the entire data for one AXI outstanding request before sending data for a different outstanding request. In other words, the
AXI master interface does not support read data interleaving.

Zero Length Reads
The AXI master interface signals a zero-length memory read transaction as a normal read
request with a burst size TARGET_AXI_ARLEN of 0. The client must respond to a zero-length
request in the same manner as a one-cycle read request by transferring a dummy one-cycle
read data burst. The PCIe Controller then sends a completion TLP with a one-DWORD payload
and byte count set to 1, as required by the PCIe specification.

Non-Contiguous Reads
The AXI master interface does not distinguish between memory read requests received
from the link with non-contiguous byte enables versus contiguous byte enables. The
PCIe Controller presents a single DWORD, non-contiguous read on the AXI master interface
with TARGET_AXI_ARLEN = 3'b0 and TARGET_AXI_ARSIZE = 3'b010. A two DWORD
non-contiguous read can be presented on the AXI master interface with TARGET_AXI_ARLEN
equal to 3'b000 or 3'b001, depending on the address alignment of the read request with
respect to the 256-bit AXI data bus. In either case, the TARGET_AXI_ARSIZE is 3'b011. The
user must implement memory reads free of side effects so that an entire word can be read
from memory without side effects even when only a part of the word is requested by the read
transaction.

AXI Master Write Operation
An AXI write transaction is a split transaction with independent address and data signals
associated with the corresponding channels. The client must follow the slave protocol for the
write address and data channel as described in the AXI Specification v1.0. The PCIe Controller

www.elitestek.com 28

TJ-Series PCIe Controller User Guide

follows the master protocol for the write address and data channel as described in the AXI
specification v1.0.

Figure 14: AXI Master Write Waveform

Response Code

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

TARGET_AXI_AWADDR

TARGET_AXI_AWVALID

TARGET_AXI_AWREADY

TARGET_AXI_AWWEN

TARGET_AXI_AWSIZE

TARGET_AXI_AWID

TARGET_AXI_WVALID

TARGET_AXI_WDATA

TARGET_AXI_WREADY

TARGET_AXI_WLAST

TARGET_AXI_BVALID

TARGET_AXI_BID Transaction ID

TARGET_AXI_BRESP
TARGET_AXI_BREADY

Example: Unaligned Address Write 1

Condition:

Address = 0x5

AWSIZE = 2 (32 bit width)

AWLEN = 0

Byte Send = 2

Addr

Byte 1 Byte 0

31 23 15 724 16 8 0

1st Transfer

0x7 0x6 0x5 0x4

www.elitestek.com 29

TJ-Series PCIe Controller User Guide

Example: Unaligned Address Write 2

Condition:

Address = 0x12

AWSIZE = 5 (256 bit width)

AWLEN = 1

Byte Send = 16

1st Transfer

2nd Transfer

15 78 0

Byte 14Byte 15

...Byte 13 Byte 0

255 ~ 151248 144 ~

Addr 0x1F ~ 0x12 ~ 0x1 0x0

The write operation starts by placing the write request parameters on the AXI master write
address channel signals. The write address channel signals are qualified by asserting the
TARGET_AXI_AWVALID signal. The starting write address is placed on TARGET_AXI_AWADDR.
The client accepts requests when it asserts TARGET_AXI_AWREADY input to the
PCIe Controller. The PCIe Controller maintains the request and its associated descriptor until it
receives acknowledgement from the client.

The PCIe Controller begins to transfer the data words by placing them on the AXI master write
data channel signals and asserting TARGET_AXI_WVALID. The client can pace the data transfer
by controlling the TARGET_AXI_WREADY input to the PCIe Controller. The PCIe Controller keeps
each data word on the TARGET_AXI_WDATA data bus until it samples the ready input as high
on a positive edge of the clock. The PCIe Controller indicates the last data transfer cycle by
asserting the TARGET_AXI_WLAST signal. It does not perform an early burst termination and
transfers the entire burst data as indicated in the TARGET_AXI_AWLEN signal during the request
cycle.

The TARGET_AXI_WSTRB[31:0] outputs to indicate the valid bytes in the data transfer cycle
on the first and last cycles of the data transfer. The transfer may start and finish at any byte
position in the data path. For writes of a single DWord, the byte valids may be non-contiguous,
as allowed by the PCIe specification. Likewise, for two-DWORD writes, the byte valids may be
non-contiguous if the starting address is aligned on an even DWORD boundary.

If the inbound TLP length is greater than the maximum AXI burst size, the PCIe Controller splits
the PCIe transaction into multiple AXI write transaction with the same TARGET_AXI_AWID. This
process ensures that write data read requests are committed to the client in order.

Poison Bit Forwarding to AXI
If poisoned bit forwarding is enabled in the AXI features control register, the poisoned TLP is
flagged in the AWUSER bit [43]. Additionally, the PCIe Controller adds a message interface bit to
indicate when a poisoned TLP is forwarded to the message interface.

The MASTER_AXI_BUSER is added to send a UR completion for poisoned non-posted write
responses. You need to set this bit along with the write response if the non-posted write request
had a poisoned TLP bit set in bit 43 of TARGET_AXI_AWUSER.

Error Handling
The client can indicate an error response for a write request on the AXI master write response
channel signals by asserting TARGET_AXI_BVALID and indicating an error code on the
TARGET_AXI_BRESP signal. The PCIe Controller ignores the response type (i.e., good or bad)
for a posted write request. For a non-posted write request, the PCIe Controller sends back a
completer abort completion to the requester; otherwise, on receipt of a good response for a non-
posted write request, PCIe Controller sends back a good completion to the requester.

AXI ID Management
All inbound posted write TLPs are issued with the same TARGET_AXI_AWID so that they
complete in order on the client memory subsystem. Each inbound non-posted write TLP is

www.elitestek.com 30

TJ-Series PCIe Controller User Guide

issued a unique TARGET_AXI_AWID so that the write responses can come back in any order.
The PCIe Controller internally manages the mapping between an incoming PCIe tag of a TLP
and the corresponding TARGET_AXI_AWID issued on the AXI master interface for a non-posted
TLP. The PCIe Controller returns a completion TLP on receipt of a write response; it maps the
incoming TARGET_AXI_BID to the corresponding PCIe tag of the TLP and sends back the
completion with the appropriate tag information. The PCIe Controller cannot have more than 32
outstanding write transactions for link 0 and link 1 at any time.

Note: The PCIe Controller does not support write data interleaving. That is, the write interleaving depth is 1.

Zero-Length Writes
The PCIe Controller ignores zero-length memory write transactions received from the inbound
PCIe link. The PCIe specification does not require completions for posted writes and the AXI
specification does not support zero-length write requests.

Non-Contiguous Writes
The PCIe specification allows memory writes with non-contiguous byte enables for single-
DWord writes, and for two-DWORD writes when the address is aligned on an 8-byte
boundary. For these write transactions, the AXI master interface sets the byte valid bits on the
TARGET_AXI_WSTRB signal based on the valid bytes indicated in the header of the request TLP.
The client must ensure that the individual bytes on the TARGET_AXI_WDATA bus are only written
to memory when the corresponding byte valid is asserted.

Ordering Between Posted and Non-Posted Writes
The PCIe Controller ensures strict ordering between posted and non-posted writes on the AXI
master write interface. All posted write requests are issued with the same TARGET_AXI_AWID
so that they complete in order in the AXI subsystem.

When a non-posted write follows a posted write, the PCIe Controller ensures that all outstanding
posted writes complete (i.e., TARGET_AXI_BVALID is received for all outstanding write
transactions) before issuing the non-posted write. This process ensures that non-posted
transactions are not processed before posted transactions.

End-to-End Data Protection
The PCIe protocol helps to ensure the integrity of data transferred via serial link. The Data Link
Layer (DLL) provides this assurance by running a Cyclic Redundancy Check (CRC) on the
integrity of Transaction Layer Packets (TLPs) and Data Link Layer Packets (DLLPs). When the
DLL finds an instance of data corruption in a DLLP, the DLL initiates a retry mechanism until the
data passes the CRC check. However, TLPs traveling outside the DLL (from the Transaction
Layer toward the Application Layer) do not benefit from these PCIe data protection protocols.
Therefore, our PCIe controller enforces additional layer of data protection in the form of a byte-
wide parity check, ensuring end-to-end TLP data integrity.

Depending upon your AXI bus, customers may need to implement byte-wide odd parity in a
cycle-by-cycle fashion. You generate this parity bus using the following RTL:

genvar i;
generate
 for (i = 0; i< AXI_PCIE_SIGNAL_PAR_WIDTH; i=i+1)
 assign axi_pcie_signal_par[i] = ~(^axi_pcie_signal[i*8 +: 8]); // odd parity
 end
endgenerate

● On the inbound path, the RTL generates parity one cycle ahead of the DLL CRC check
to ensure a one-cycle overlap between the two protection methods. The controller
transmits this parity data in tandem with the original data across the pipeline to the
application/client logic at the controller boundary.

— At the pcie_target_AXI interface, the controller drives parity for all bytes of
pcie_target_AXI_WDATA on pcie_target_AXI_WUSER output regardless of
pcie_target_AXI_WSTRB.

www.elitestek.com 31

TJ-Series PCIe Controller User Guide

— At the pcie_master_AXI interface, the controller drives parity for all bytes of
pcie_master_AXI_RDATA on the pcie_master_AXI_RUSER output.

● On the outbound path, the application/client logic provides cycle-by-cycle parity at the
controller’s interface boundary (this can be either the AXI or HAL boundary, depending
upon the controller configuration). The controller maintains this parity across the
datapath pipeline up to the link layer. Upon receipt, the link layer generates the CRC
and, one cycle later, the controller checks for parity with the data, thus ensuring a one-
cycle overlap between the two protection methods.

— At the pcie_master_AXI interface, the client must drive parity for all bytes
of pcie_master_AXI_WDATA on pcie_master_AXI_WUSER, regardless of
pcie_master_AXI_WSTRB.

— At the pcie_target_AXI interface, the client must drive parity for all bytes of
pcie_target_AXI_RDATA on the pcie_target_AXI_RUSER input.

Inbound Message Interface
The PCIe Controller includes a dedicated interface for inbound messages. The inbound
message interface is suitable for driving a message gathering FIFO (the PCIe Controller does
not include this FIFO). You can place message-type decode logic to filter messages into different
FIFOs, take specific action, or discard redundant messages, depending on the application
needs.

The interface is synchronous to AXI_CLK and does not support back pressuring. It includes
valid, start, and end strobes, as well as strobes to identify vendor-defined header and data. The
message interface width is the same as the AXI master port data bus.

The message header always occupies 64 bits with an additional 64 bits for header bits [127:64]
of a vendor-defined message.

www.elitestek.com 32

TJ-Series PCIe Controller User Guide

Table 13: Message Header Bit Allocation

Bits Bit Description Header Stripe

255:128 Unused 0

127:64 Vendor Defined Message Header
Page Request Messages:

● [127:120] Page Address [63:56]
● [119:112] Page Address [55:48]
● [111:104] Page Address [47:40]
● [103:96] Page Address [39:32]
● [95:88] Page Address [31:24]
● [87:80] Page Address [23:16]
● [79:76] Page Address [15:12]
● [75:67] Page Request Group Index
● [66] L bit (last request in PRG)
● [65] W bit (write access requested)
● [64] R bit (read access requested)

For Page Request Group Response Messages:
● [127:112] Destination ID
● [111:108] Response code
● 0000b: Success
● 0001b: Invalid request
● 1110b to 0010b: Unused
● 1111b: Response failure
● [104:96] PRG Index

Stop Marker Messages:
● [71:67] Marker type (expected value 5'b00000)
● [66] L bit (expected value 1'b1)
● [65] W bit
● [64] R bit

Invalidation Request Messages:
● [127:112] Destination ID

Invalidate Completion Messages:
● [127:112] Device ID
● [98:96] CC value
● [95:64] ITAG Vector

For OBFF messages, [123:120] carries the OBFF message code. Other bits are unused.
For LTR messages:

● [127:120] Snoop latency bits [7:0]
● [119:112] Snoop latency bits [15:8]
● [111:104] No-snoop latency bits [7:0]
● [103:96] No-snoop latency bits [15:8]

0

63:60 Unused 0

59:52 PCIe tag for normal messages
For invalidation request messages:
[56:52] -ITAG

0

51:36 If bit 32 (TPH present) is set to 1, this field has the steering tag.
If bit 32 is cleared this field has the PCIe tag for the vendor-defined messages.

0

35:34 Processing hint 0

33 1: 16-bit steering tag
0: 8-bit steering tag

0

32 TPH Present 0

31:24 Message Code 0

23:8 Requester ID 0

6:4 Routing 0

3:1 Attributes 0

www.elitestek.com 33

TJ-Series PCIe Controller User Guide

Bits Bit Description Header Stripe

0 0: Normal vendor defined message 0

Message Interface Signals
The message interface has the following functionality:

● The MSG_VALID strobe signal indicates when MSG has valid data or a valid header.
● The MsgD data always starts at byte 0 of the new cycle (LSB).
● Byte enables (MSG_BYTE_EN) are valid when the interface is outputting message data

(the MSG_DATA strobe signal is asserted).
● MSG_BYTE_EN is driven low when the interface is outputting a message header or

vendor defined header.
● When transferring data, MSG_BYTE_EN does not have any 0s in between 1s. Therefore,

the data will be contiguous without any byte valid low.
● The PCIe Controller may de-assert the MSG_VALID signal during the message transfer

(in between MSG_START and MSG_END).
● The MSG output is only valid when MSG_VALID is 1.
● The MsgD payload size is limited by the PCIe Controller's MAX_PAYLOAD_SIZE value.
● All header bits are in a single stripe.

Note: Refer to Message Interface for message signals description.

Figure 15: Message Interface Waveforms

AXI_CLK
VMH D D D

0x0 BE BE BE

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Vendor Defined
Message with Data

AXI_CLK
VMH D

0x0 BE

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Message with Data

AXI_CLK
VMH

0x0

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Vendor-Defined
Message without Data

AXI_CLK
MH

0x0

MSG
MSG_BYTE_EN

MSG_VALID
MSG_START

MSG_END
MSG_DATA
MSG_VDH

Message without Data

BE: Byte enable.
D: Data.
MH: Only normal message bits [63:0] are valid.
VMH: Only vendor-defined message header bits [127:0] are valid.

Message Interface FIFO Buffer
The FIFO depth can be selected to anything more than 32 with a programmable threshold
for handling the message overflow (with an interrupt to the local processor when overflow is

www.elitestek.com 34

TJ-Series PCIe Controller User Guide

detected). You can decide which message types you require. The PCIe Controller's AXI interface
contains logic to decode messages for the assertion and de-assertion of legacy interrupts.

Figure 16: Message Interface FIFO

Message FIFO

Message FIFO
Control Logic

PCIe
Controller

Message
Interface

These messages are output on the message interface the same as any other message, with
the addition of assertion or deassertion of the relevant INTA_OUT, INTB_OUT, INTC_OUT,
or INTD_OUT signal. The change on the relevant INTx_OUT signal occurs during the same
clock cycle that the message is output on the message interface. The INTx_OUT signal levels
are not changed if an assert message is received for an interrupt that is already asserted, or
if a deassert message is received for an interrupt that is already deasserted. The message is
output on the message interface as usual. All four interrupts are deasserted when the AXI reset
is asserted and when the LINK_DOWN_RESET signal is asserted. In-bound messages from the
link that are directed to the message interface (intended for the message FIFO) do not appear in
the main AXI master interface.

Message Interface Codes

Table 14: Inbound Message Codes

Message Code Routing Type Description Mode Integration Comment Number
of DW

0000_0000 011 Msg Unlock DM - 2

0000_0001 010 MsgD Invalidate
Request Message

EP The PCIe Controller takes no action and
forwards the message to the message
interface. Endpoint client logic must invalidate
the corresponding address translation table
entries upon receiving this message.

4

0000_0010 010 Msg Invalidate
Completion
Message

RP The PCIe Controller takes no action and
forwards the message to the message
interface. Indicates completion of invalidation
operation.

4

0000_0100 000 Msg Page Request
Message

RP The PCIe Controller takes no action and
forwards the message to the message
interface. Client must take appropriate action.

4

0000_0101 010 Msg PRG Response
Message

EP The PCIe Controller takes no action and
forwards the message to the message
interface. Client must take appropriate action.

4

0001_0000 100 Msg Latency Tolerance
Reporting
Message

RP Internally captured by PCIe Controller
and compared with the
L1_pm_substates_control1_reg_LTR_
L1_2_threshold to determine L1.2 substate
entry. Client can ignore this message.

4

0001_0010 100 Msg OBFF EP If OBFF_ENABLE[1:0] == 01 or 10, the
PCIe Controller forwards the OBFF message
to the message interface. Otherwise it reports
it as UR. Client can optionally process the
OBFF message to determine the CPU activity.

4

0001_0100 100 Msg PM_Active_
State_Nak

EP Internally processed during ASPM L1 Entry
negotiation. Also forwarded to message
interface. Client can ignore this message.

2

www.elitestek.com 35

TJ-Series PCIe Controller User Guide

Message Code Routing Type Description Mode Integration Comment Number
of DW

0001_1000 000 Msg PM_PME RP The PCIe Controller takes no action and
forwards the message to the message
interface. Client must process this message
per PCIe power management specifications.
For example, the root port can issue a CfgWr
to change the requesting function power state
to D0.

2

0001_0001 011 Msg PME_Turn_Off EP If all function power states are in non-D0 state
and if PME Turnoff Ack Delay > 0x0000, the
PCIe Controller automatically transmits a
PME_TO_Ack message after the PME Turnoff
Ack Delay time. In this case, the client logic
should not send PME_TO_ACK.
Otherwise, the client logic must respond with
the PME_TO_Ack message.

2

0001_0011 101 Msg PME_To_Ack RP The PCIe Controller takes no action and
forwards the message to the message
interface. Client can choose to turn off the
power after receiving this message.

2

0010_0000 100 Msg Assert_INTA RP The PCIe Controller asserts INTA_OUT upon
receiving this message. Client can ignore this
message and only use INTA_OUT.

2

0010_0001 100 Msg Assert_INTB RP The PCIe Controller asserts INTB_OUT upon
receiving this message. Client can ignore this
message and only use INTB_OUT.

2

0010_0010 100 Msg Assert_INTC RP The PCIe Controller asserts INTC_OUT upon
receiving this message. Client can ignore this
message and only use INTC_OUT.

2

0010_0011 100 Msg Assert_INTD RP The PCIe Controller asserts INTD_OUT upon
receiving this message. Client can ignore this
message and only use INTD_OUT.

2

0010_0100 100 Msg Deassert_INTA RP The PCIe Controller de-asserts INTA_OUT
upon receiving this message. Client can
ignore this message and only use INTA_OUT.

2

0010_0101 100 Msg Deassert_INTB RP The PCIe Controller de-asserts INTB_OUT
upon receiving this message. Client can
ignore this message and only use INTB_OUT.

2

0010_0110 100 Msg Deassert_INTC RP The PCIe Controller de-asserts INTC_OUT
upon receiving this message. Client can
ignore this message and only use INTC_OUT.

2

0010_0111 100 Msg Deassert_INTD RP The PCIe Controller de-asserts INTD_OUT
upon receiving this message. Client can
ignore this message and only use INTD_OUT.

2

0011_0000 000 Msg ERR_CORR RP The PCIe Controller asserts
CORRECTABLE_ERROR_DETECTED
_OUT for one clock cycle when it receives
a ERR_CORR message. Client can
ignore this message and only use
CORRECTABLE_ERROR_DETECTED_OUT.

2

0011_0001 000 Msg ERR_NONFATAL RP The PCIe Controller asserts
NON_FATAL_ERROR_DETECTED_OUT
for one clock cycle when it receives
a ERR_CORR message. Client can
ignore this message and only use
NON_FATAL_ERROR_DETECTED_OUT.

2

0011_0001 000 Msg ERR_FATAL RP The PCIe Controller asserts
FATAL_ERROR_DETECTED_OUT for one
clock cycle when it receives a ERR_CORR
message. Client can ignore this message and
only use FATAL_ERROR_DETECTED_OUT.

2

0100_0000 100 Msg Ignored NA – 2

0100_0000 100 Msg Ignored NA – –

www.elitestek.com 36

TJ-Series PCIe Controller User Guide

Message Code Routing Type Description Mode Integration Comment Number
of DW

0100_0001 100 Msg Ignored NA – –

0100_0011 100 Msg Ignored NA – –

0100_0100 100 Msg Ignored NA – –

0100_0101 100 Msg Ignored NA – –

0100_0111 100 Msg Ignored NA – –

0101_0000 100 Msg Set_Slot_
Power_Limit

EP The PCIe Controller stores the data from
the received message in the Captured Slot
Power Limit Scale and Value fields in Device
Capabilities Register. Client can ignore this
message.

2

0111_1110 000, 010,
011, 100

Msg,
MsgD

VD Msg Type0 DM The PCIe Controller takes no action and
forwards the message to the message
interface. Processing of Vendor Defined
Message is implementation specific.

4

0111_1111 000, 010,
011, 100

Msg,
MsgD

VD Msg Type1 DM The PCIe Controller takes no action and
forwards the message to the message
interface. Processing of a vendor-defined
message is implementation specific.

4

Ordering Between AXI Master Write and Read Channels
The PCIe Controller issues posted writes on the AXI master write channel, non-posted writes
on the AXI master write channel, and non-posted reads on the AXI master read channel. The
PCIe Controller enforces PCIe ordering between posted and non-posted reads and writes on the
AXI master interface. Posted writes are always sent before of non-posted reads or writes.

Before issuing non-posted transactions on the AXI master write or AXI master read channels,
the PCIe Controller ensures that previously issued posted writes have completed on the client by
waiting for all TARGET_AXI_BVALID responses to come back.

On the AXI master interface, the PCIe ordering rules are followed as shown in the following
tables. The columns represent a first issued transaction and the rows represent a subsequently
issued transaction. The table entry indicates the ordering relationship between the two
transactions. The table entries are defined as follows:

● Yes—The second transaction (row) must be allowed to pass the first (column) to avoid
deadlock. When blocking occurs, the second transaction must pass the first transaction.
Fairness must be comprehended to prevent starvation.

● Y/N—There are no requirements. The second transaction may optionally pass the first
transaction or be blocked by it.

● No—The second transaction must not be allowed to pass the transaction to support the
producer–consumer strong ordering model.

Table 15: Inbound Ordering (Endpoint Mode)

Non-Posted RequestRow Pass Column? Posted
Request
(Col 2) Read Request

(Col 3)
With Data

(Col 4)

Completion
(Col 5)

Posted Request (Row A) No Yes Yes (1) Yes

Read Request (Row B) No No Yes YesNon-Posted
Request

NPR with Data (Row C) No Yes No Yes

Completion (Row D) A: No (2)
B: Y/N (3)

Yes Yes No (4)

www.elitestek.com 37

TJ-Series PCIe Controller User Guide

Table 16: Inbound Ordering (Root Port Mode)

Non-Posted RequestRow Pass Column? Posted
Request
(Col 2) Read Request

(Col 3)
With Data

(Col 4)

Completion
(Col 5)

Posted Request (Row A) No Yes N/A (1) Yes

Read Request (Row B) No No N/A YesNon-Posted
Request

NPR with Data (Row C) N/A N/A N/A N/A

Completion (Row D) A: No (2)
B: Y/N (3)

Yes N/A No (4)

Notes:

1. Posted reads and writes always pass non-posted reads and writes in the transaction layer.
However, a non-posted write can stall on the AXI write channel for a long time if the client
cannot service the non-posted write, which in turn blocks a posted write coming in later
from the link. To address this issue, the client can use the TARGET_NON_POSTED_REJ
input signal to indicate that the PCIe Controller should not service non-posteds from the
transaction layer's non-posted FIFO. This action allows posted transactions to go through
the AXI write channel when the client cannot service non-posted read and writes.

2. A completion must not pass a posted request unless Row D Column 2 B applies.
3. An I/O or configuration write completion can pass a posted request. A completion with a

relaxed ordering set can pass a posted request. A completion with an ID-based ordering
set can pass a posted request if the completer ID of the completion is different from the
requester ID of the posted request.

4. Although completions do not pass each other at the transaction layer, completions are
reordered back to the AXI bus because AXI bus reads with same ID have to come in order.
However, there is no relaxed ordering or ID-based ordering effect.

Inbound PCIe to AXI Address Translation (Root Port)
The PCIe Controller performs root port inbound PCIe to AXI address translation on memory and
I/O TLPs. The PCIe Controller chooses which address translation registers to use for translation
based on the BAR match of the incoming TLP. There are two BARs in root port mode, so the
registers are BAR0 and BAR1. Additionally, the PCIe Controller uses the BAR7 register for
cases in which there are no matches. The PCIe Controller sends any address that does not
match the root port BARs as a BAR7 TLP.

Each BAR register has two 32-bit registers, addr0 and addr1. The address translation logic
takes the upper bits from the root port inbound PCIe to AXI address translation registers and
takes the lower bits from the inbound PCIe address to form the AXI address. The addr0[5:0]

www.elitestek.com 38

TJ-Series PCIe Controller User Guide

+ 1 number of lower bits are passed from the inbound PCIe address to AXI address. That is, the
number of bits taken from inbound PCIe address is given by the addr0[5:0] + 1 value.

Figure 17: Root Port Inbound PCIe to AXI Address Translation

Root Port Inbound
PCIe to AXI Address

Translation Logic

Root Port Inbound
PCIe to AXI Address
Translation Registers

Inbound PCIe 64-bit Address
from the PCIe Controller

Inbound BAR Number
from the PCIe Controller

BAR 0: {addr1, addr0}
BAR 1: {addr1, addr0}
BAR 2: {addr1, addr0}

AXI Address

AXI Logic

Table 17: Root Port Inbound PCIe to AXI Address Translation Registers for 1 BAR

Where BAR is bar0, bar1 or bar7

Register Name Bits Description Default Value

ib_rp_[BAR]_addr1 31:0 Upper [63:32] bits of the AXI address. 32'd0

31:8 Lower [31:8] bits of the AXI address. 24'd0

7:6 Reserved 2'd0

ib_rp_[BAR]_addr0

5:0 Number of address bits passed from PCIe to AXI. The PCIe Controller
passes the programmed value + 1 bits from PCIe to AXI. The minimum value
to be programmed into this field is 7 because the lower eight bits of the base
address programmed in these registers (AXI) are replaced by zeros by the
address translation logic.

6'd0

Inbound PCIe to AXI Address Translation (Endpoint)
The PCIe Controller performs end point inbound PCIe to AXI address translation on memory and
I/O TLPs. The PCIe Controller chooses which address translation registers to use for translation
based on the BAR match of the incoming TLP. There are seven BARs per function in endpoint
mode; therefore, there are seven sets of registers per function with each BAR having two 32-
bit registers (addr0 and addr1). The address translation logic takes the upper bits from the
endpoint inbound PCIe to AXI address translation registers and takes the lower bits from the

www.elitestek.com 39

TJ-Series PCIe Controller User Guide

inbound PCIe address to form the AXI address. The inbound BAR aperture determines the
number of bits to pass from the inbound PCIe address to AXI.

Figure 18: Endpoint Inbound PCIe to AXI Address Translation

Endpoint Inbound
PCIe to AXI Address

Translation Logic

Endpoint Inbound
PCIe to AXI Address
Translation Registers

Inbound PCIe 64-bit Address
from the PCIe Controller

Inbound Function
Number, BAR Number,

and BAR Aperture
from the PCIe Controller Function 0: BAR 0 to BAR 6

Function 1: BAR 0 to BAR 6
Function n: BAR 0 to BAR 6

AXI Address

AXI Logic

Table 18: Endpoint Inbound PCIe to AXI Address Translation Registers for 1 BAR

Where BAR is bar0, bar1, bar2, … bar7 and PF is pf0, pf1, pf2, ... pf21

Register Name Bits Allocation Default Value

[PF]_ib_ep_[BAR]_addr1 31:0 Upper [63:32] bits of the AXI address. 32'd0

[PF]_ib_ep_[BAR]_addr0 31:0 Lower [31:8] bits of the AXI address. 32'd0

AXI Slave Interface
The AXI slave interface enables a client endpoint to initiate PCI transactions as a bus master
across the PCIe link to the host memory. For root ports, this interface initiates I/O and
configuration requests. For endpoints, this interface must be connected to client logic only when
the client has bus master capability. Endpoints and root ports can also use the slave interface
to send messages on the PCIe link. The transactions on this bus are similar to those on the AXI
master bus, except that the roles of the PCIe Controller and the client are reversed.

The client must check the following conditions before making a request on the AXI slave
interface:

● Only root ports can initiate I/O or configuration requests.
● An endpoint can initiate a memory read or write request only when the Bus Master

Enable bit of the PCI Command Register associated with the requesting function is set.
These bits are accessible on the PCIe Controller's FUNCTION_STATUS output (see
Status and Error Indicator Signals on page 102).

● An endpoint can only send requests when the originating function's power state is D0-
Active. The function power state is available on the FUNCTION_POWER_STATE output
(see Status and Error Indicator Signals on page 102).

● The originating function is not currently processing a function-level reset (FLR).

Note: All AXI slave interface signals have the prefix MASTER_AXI (see AXI Slave Interface Signals on page 97).

Unsupported Request Handling During Enumeration (Rootport)
If an unsupported request (UR) or configuration request retry status (CRS) is received for a
configuration request, the PCIe Controller does not assert the SLVERR if the AXI features control
register's SLVERRCTRL bit is set to 1. The returned data is:

● UR—32'hFFFF_FFFF
● CRS—32'hFFFF_0001

www.elitestek.com 40

TJ-Series PCIe Controller User Guide

AXI Slave Ordering
If non-posted writes and posted writes are issued to the AXI slave with the same ID, posted write
requests are only sent to the link when the previous non-posted write completions are received
from the link. This process follows the AXI ordering rules for same ID requests.

Completion Error Handling
When the PCIe Controller receives a completion TLP from the link, it matches the TLP
against the outstanding requests in the split completion table to determine the corresponding
request and compares the fields in its header against the expected values to detect any error
conditions. The PCIe Controller then signals the error conditions on MASTER_AXI_RRESP
and sets SLVERR (2'b10) or DECERR(2'b11). The PCIe Controller asserts this signal as well
as the MASTER_AXI_RRESP and MASTER_AXI_RVALID signals. When the client receives a
read response with slave error as the response code, it should discard the data sent by the
PCIe Controller and it should either discard or retry the corresponding request.

The PCIe error conditions that can lead to a slave error are:

● The completion TLP received from the link was poisoned.
● Request terminated by a completion TLP with UR, CA, or CRS status.
● Read request terminated by a completion TLP with incorrect byte count.
● The current completion being delivered has the same tag as an outstanding request,

but its requester ID, TC, or Attr fields did not match the parameters of the outstanding
request.

● Error in starting address.
● Request terminated by a completion timeout, or by a function-level reset (FLR) targeting

the function that generated the request.

AXI Slave Read Operation
An AXI read is a split transaction with independent address and data on the corresponding
channels. The client must follow the master protocol for the read address and data channel as
described in the AXI Specification v1.0. The PCIe Controller follows the slave protocol for the
read address and data channel as described in the AXI specification v1.0.

Figure 19: AXI Slave Read Interface Waveform

Response Code

Transaction ID

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

MASTER_AXI_ARADDR

MASTER_AXI_ARVALID
MASTER_AXI_ARREADY

MASTER_READ_DESCRIPTOR

MASTER_AXI_ARLEN

MASTER_AXI_ARSIZE

MASTER_AXI_RVALID

MASTER_AXI_RDATA

MASTER_AXI_RREADY

MASTER_AXI_RLAST

MASTER_AXI_RID

MASTER_AXI_RRESP

MASTER_AXI_ARID

Response Code

1

1: PCIe TLP parameters.

When MASTER_AXI_ARLEN is not zero, MASTER_AXI_ARSIZE must be the maximum value (5).

www.elitestek.com 41

TJ-Series PCIe Controller User Guide

The client starts a memory read operation by placing the read request parameters on the
AXI slave read address channel and asserting the MASTER_AXI_ARVALID signal. The
PCIe Controller responds to the request by asserting the MASTER_AXI_ARREADY signal for
one clock cycle. The PCIe Controller might not be able to accept the request if it does not have
adequate credit to transmit the request TLP on the link or if the split completion table is full.

When the data for a read request becomes available, the PCIe Controller transfers the data on
the AXI slave read data channel. The PCIe Controller begins the transfer by placing the data
word on the MASTER_AXI_RDATA bus and asserting the MASTER_AXI_RVALID signal. The
completion is delivered as a single burst for each read request. In the first data transfer cycle,
the PCIe Controller returns data on MASTER_AXI_RDATA bus aligned to the request address.
It indicates the last data transfer cycle by asserting the MASTER_AXI_RLAST signal. The client
can pace the data transfer by controlling the MASTER_AXI_RREADY input to the PCIe Controller.
The PCIe Controller keeps each data word on the MASTER_AXI_RDATA bus until it samples the
ready input high on a positive edge of the clock. The PCIe Controller will not terminate a burst
for a read request on the AXI slave interface. It always satisfies the complete read request as
indicated by the MASTER_AXI_ARLEN signal.

In root port, the AXI Slave interface initiates configuration and I/O read requests, which function
in the same way as memory reads. These requests are distinguished from memory requests by
the transaction-type field in the master read descriptor bus. The data returned in response to
these requests is always four bytes long and is delivered aligned to the request address.

Tag Management for Non-Posted Transactions

The AXI slave maintains the state of all pending, client-initiated non-posted transactions (e.g.,
memory reads, I/O reads and writes, configuration reads and writes) so that the completions
returned by the targets can be matched to the corresponding requests. The AXI slave has a split
completion table that stores the state of each outstanding transaction; the table has a capacity of
four non-posted transactions. The returning completions are matched with the pending requests
using an 8-bit tag. The PCIe Controller allocates the tag for each non-posted request initiated
from the AXI slave. The PCIe Controller maintains a list of free tags and assigns one to each
request when the client initiates a non-posted transaction. The PCIe Controller checks whether
the split completion table is full, and only accepts an AXI request from the client if the number of
outstanding non-posted requests is less than four.

Error Handling

The PCIe Controller drives the MASTER_AXI_RRESP signal when it sends read data out for
a request with MASTER_AXI_RVALID. It can signal an error response to the client any time
during the data transfer cycles by putting an error response of SLVERR or DECERR on the
MASTER_AXI_RRESP output.

AXI ID Management

Read requests are split transactions; that is, the client may make additional read and
write requests while the completion for a read request is pending. The client can issue
each outstanding read request with the same MASTER_AXI_ARID or unique ones. The
PCIe Controller can receive a maximum of 256 outstanding read requests. It internally maps
the MASTER_AXI_ARID to an internally generated PCIe tag. The PCIe Controller looks up this
mapping to translate an incoming completion to a corresponding MASTER_AXI_RID value sent
with the read data channel.

Note: The read interleaving depth is one; that is, the PCIe Controller transfers complete data for a particular read request before
sending data out for another read request.

Completion Data Ordering

AXI specifications mandate that if there are outstanding read requests with same
MASTER_AXI_ARID, read data should be returned by the AXI slave interface in order.
However, because each of these outstanding read requests are assigned unique tags on the
PCIe side, the PCIe ordering rules permit the read completions to come back in any order.
The PCIe Controller re-orders the out-of-order completions and issues them out on the AXI
slave read data channel in the correct order. If the client issues read requests with unique
MASTER_AXI_ARID, the AXI ordering rules permit the read data to come back out of order and
the PCIe Controller issues the read data in the order it comes back from the PCIe link.

www.elitestek.com 42

TJ-Series PCIe Controller User Guide

Error and Decode Errors

The following table lists the different status codes and their causes. The decode_err indicates
a usage error and points to incorrect user programming of the AXI outbound address. This error
is fatal; the behavior of the PCIe Controller after this error is not deterministic.

The user application should:
● Fix the programming error causing the decode error.
● Reset the PCIe Controller to recover from this error.

Table 19: AXI Slave Error and Decode Error Cases

Cases Indication Register MASTER_AXI_
RUSER_STATUS

Description AXI
Response

Normal completion. N/A 5'b000 The completion returned by
the link partner has no errors.

OK

The completion TLP received
from the link was poisoned.

Poisoned TLP status in AER
Uncorrectable Status Register
Detected parity error bit in
Command Status Register

5'b001 The completion received from
the link was poisoned.

SLVERR

Request terminated by a
completion TLP with UR, CA, or
CRS status.

Received target abort status
bit in Command and Status
Register only for CA

5'b010 Request terminated by a
completion TLP with UR,
CA, or CRS status by the link
partner.

SLVERR

Read request terminated by a
completion TLP with incorrect
byte count.

N/A 5'b011 The returned completion did
not match the request stored
locally for byte count.

SLVERR

The current completion being
delivered has the same tag as
an outstanding request, but its
requester ID, TC, or Attr fields
did not match the parameters of
the outstanding request.

N/A 5'b100 The returned completion did
not match the request stored
locally for requester ID, TC, or
Attr fields.

SLVERR

Error in start address. N/A 5'b101 The completion start address
bits [6:0] did not match the
request start address.

SLVERR

Request terminated by a
completion timeout, or by a
function-level reset (FLR)
targeting the function that
generated the request.

Completion timeout status
in AER Uncorrectable Error
Status Register and Local
Error Status Register
FLR_IN_PROGRESS pin is
asserted to indicate FLR

5'b111 A completion timeout or FLR
terminated the request.

SLVERR

Link down reset indication bit
set.

Link down indication bit in the
AXI configuration registers is
set

N/A N/A SLVERR

AXI slave read/write addresses
did not match any of the AXI
base addresses programmed in
the outbound regions.

N/A 5'b10000 The AXI slave read or write
address did not match any
of the AXI base addresses
programmed in the outbound
region.

DECERR

Internal error in the PCIe
completion path buffers.

Uncorrectable error in the AXI
reorder RAM or completion
RAM

5'b01000 The ECC/parity decoder
flagged an uncorrectable
error while reading from
any of the completion path
buffers.

SLVERR

AXI Slave Write Operation
An AXI write is a split transaction with independent address, data, and response phases
associated with the corresponding channels. The client must follow the master protocol for
the write address, data, and response channel as described in the AXI specification v1.0. The

www.elitestek.com 43

TJ-Series PCIe Controller User Guide

PCIe Controller follows the slave protocol for the write address, data, and response channel as
described in the AXI specification v1.0.

Figure 20: AXI Slave Write Interface Waveform

Response Code

Transaction ID

Burst Width

Burst Length

Word 0 Word 1
Word n-1

Word n

TLP Address

AXI_CLK

MASTER_AXI_AWADDR

MASTER_AXI_AWVALID

MASTER_AXI_AWREADY

MASTER_AXI_AWLEN

MASTER_AXI_AWSIZE

MASTER_AXI_AWID

MASTER_AXI_WVALID

MASTER_AXI_WDATA

MASTER_AXI_WREADY

MASTER_AXI_WLAST

MASTER_AXI_BVALID

MASTER_AXI_BID Transaction ID

MASTER_AXI_BRESP

MASTER_AXI_BREADY

Transaction IDMASTER_AXI_WID

When MASTER_AXI_ARLEN is not zero, MASTER_AXI_ARSIZE must be the maximum value (5).

The client starts a memory write operation by placing the write request parameters on the AXI
slave write address channel and asserting the MASTER_AXI_AWVALID signal. Additionally,
the client must place the write request PCIe TLP attributes on the master write descriptor. The
PCIe Controller responds to the request by asserting the MASTER_AXI_AWREADY signal for
one clock cycle. The PCIe Controller might not be able to accept the request if it does not have
adequate credit to transmit the request TLP on the link or the split completion table is full (for a
non-posted write).

The client begins the data transfer by placing data on the AXI slave write data channel signals
and asserting the MASTER_AXI_WVALID signal. The PCIe Controller can pace the data transfer
by controlling the MASTER_AXI_WREADY output. The client must keep each data word on the
bus until the ready signal is sampled high. The MASTER_AXI_WSTRB inputs indicates the valid
bytes in the data cycle for the first and the last data transfer. The transfer may start and finish
at any byte position in the data bus, depending on the starting address alignment of the data
block being written to memory. The client should assert MASTER_AXI_WLAST for the last cycle
of data transfer. The client must not terminate the AXI write burst early; it should issue all write
data cycles as indicated by the MASTER_AXI_AWLEN signal.

The PCIe Controller expects the byte valids to be contiguous, even for writes of a single
DWORD or two DWORDs (with start address aligned to even DWORD boundary).

The PCIe Controller issues a response back to the client on the AXI slave write response
channel by asserting MASTER_AXI_BVALID when a memory write transaction has been
accepted by the PCIe Controller's transaction layer.

Configuration and I/O (non-posted) writes are handled in a similar manner, except that the data
payload is only one DWORD long. The PCIe Controller only issues a response for I/O and
configuration writes when it receives the completion back from the PCIe link.

Error Handling

For configuratrion and I/O (non-posted) writes, the PCIe Controller might receive a completion
with error status from the PCIe link. In this case, the PCIe Controller issues an error response

www.elitestek.com 44

TJ-Series PCIe Controller User Guide

(i.e., SLVERR) on the AXI slave write response channel's MASTER_AXI_BRESP output by
asserting MASTER_AXI_BVALID.

AXI ID Management

AXI slave write requests are split transactions; that is, the client can make additional read
and write requests while the response for a write request is pending. The client can issue
each outstanding write requests with the same MASTER_AXI_AWID or unique ones. The
PCIe Controller can receive a maximum of 32 outstanding write requests. For non-posted
writes, the PCIe Controller internally maps the MASTER_AXI_AWID to an internally generated
PCIe tag. It looks up this mapping to translate an incoming completion to a corresponding
MASTER_AXI_BID value sent with the write response channel.

Note: The write data interleaving depth is one; that is, client logic must send the complete data for a particular write request
before sending data for another write request.

Zero-length Writes

The AXI slave can initiate a zero-length memory write transaction in the same way as a 1-byte
memory write transaction, except the byte valid bits in MASTER_AXI_WSTRB are all set to zero
during the data cycle. The PCIe Controller sends a memory write request on the PCIe link with
the length field set to one double word, and the byte-enable fields set to all zeroes.

Write Transaction Ordering

On the outbound direction, the PCIe Controller is in cut-through mode. That is, there are no store
and forward buffers and TLPs flow out to the link strictly in the order they were received from
the AXI slave interface. TLPs go out on the link in the same order they were accepted on the
AXI slave write interface, whether the writes are posted or non-posted or whether they have the
same MASTER_AXI_AWID or different. This process ensures PCIe ordering rule compliance.

AXI Configuration and Status Registers
The PCIe Controller uses the concept of regions to send different types of outbound TLPs
(memory, message, etc.). This arrangement allows the static information in the TLPs to be
pre-programmed in the AXI configuration region registers. The PCIe Controller uses decoding
logic to compare the incoming AXI address to the preprogrammed AXI address in the AXI
configuration registers to determine which region it belongs to. You can program the region
registers using the APB interface. When the PCIe Controller access a region using the
corresponding MASTER_AXI_AW or MASTER_AXI_RADDR region, the address is selected and is
used to supply the static pre-programmed TLP information.

Each region has a set of descriptor registers to form the TLP: AXI to PCIe address translation
(PCIe address registers) and AXI region decoding (AXI address registers). AXI configuration
registers also include link down indication bit. Refer to the Titanium PCIe Controller Registers
User Guide for details.

The AXI configuration register set also includes inbound address translation registers. For
endpoints, the function number and the bar number is used to find the correct address
translation register.

PCIe Controller Outbound Accesses
There are two ways to perform an outbound access:

● Static method, which is region based
● Dynamic method, which uses the sideband descriptor

The static method is useful when you only have the TLP type (read or write) and want to
send pre-programmed TLP information through the outbound PCIe interface. You use the
APB interface to change the TLP information stored in regions, and each region must be re-
programmed.

The dynamic method is useful when you already have the TLP information stored outside of
the PCIe Controller and you want to send it through the outbound PCIe interface. This method

www.elitestek.com 45

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

TJ-Series PCIe Controller User Guide

bypasses the AXI address translation logic. If you already have the TLP information, this feature
saves re-programming time if you need to change the TLP information.

Outbound Access Using Regions

A maximum of 32 outbound regions can be active at the same time. Each region has registers
that control its operation.

Figure 21: AXI Outbound Access Block Diagram

Region
Select
Logic

Multiplexer

AXI Address

APB Interface

Outbound
PCIe

Descriptor

Outbound AXI to PCIe
Address Translation Registers

Outbound PCIe
Descriptor Registers

AXI Region
Base Address Registers

Outbound AXI to PCIe
Address Translation

Descriptor
Generation

Logic

Outbound
PCIe

Address

The outbound access is a two-step process:

1. Region Setup—Before accessing the region registers, you program them using the APB
interface.

2. Region Access—You access the region registers through the outbound AXI interface.

Table 20: Outbound Registers for 1 Region

Registers Description

Outbound AXI to PCIe address translation
registers

Performs address translation from the AXI address to the PCIe address.

Outbound PCIe descriptor registers Holds the TLP information to be sent outbound.

AXI region base address registers Holds the AXI region base address and the region size of the corresponding region.
The PCIe Controller uses this register set to decode the region by matching it to the
incoming AXI address.

Outbound AXI-to-PCIe Address Translation Registers

The PCIe Controller uses these registers (ob_addr0 and ob_addr1) to perform outbound
AXI to PCIe address translation for memory and I/O TLPs. For the configuration TLPs, the bus
number, device number, and the function number can be programmed in the outbound AXI to
PCIe address translation registers if the pass bits are programmed to pass fewer than specific
bits.

www.elitestek.com 46

TJ-Series PCIe Controller User Guide

Table 21: ob_addr1 Outbound AXI-to-PCIe Address Translation Registers

Bits Memory and I/O TLPs Vendor Defined Messages Normal Messages Default
value

31:0 Upper [63:32] bits of the PCIe address. Vendor-defined message
header [127:96]

Reserved for normal
messages

32'd0

Table 22: ob_addr0 Outbound AXI-to-PCIe Address Translation Registers

Bits Memory and I/O TLPs Vendor Defined Messages Normal Messages Default
value

31:28 Lower [31:28] bits of the PCIe address. Vendor-defined message
header [95:92]

Reserved for normal
messages

4'd0

27:20 Lower [27:20] bits of the PCIe address. Vendor-defined message
header [91:84]

Reserved for normal
messages

8'd0

19:15 Lower [19:15] bits of the PCIe address. Vendor-defined message
header [83:79]

Reserved for normal
messages

5'd0

14:12 Lower [14:12] bits of the PCIe address. Vendor-defined message
header [78:76]

Reserved for normal
messages

3'd0

11:8 Lower [11:8] bits of the PCIe address. Vendor-defined message
header [75:72]

Reserved for normal
messages

4'd0

7:6 Reserved. Reserved Reserved 2'd0

5:0 Number of address bits passed from AXI to PCIe.
The PCIe Controller passes the programmed
value + 1 bits from AXI to PCIe. The minimum
value to be programmed into this field is 7
because the translation logic replaces the PCIe
address's lower 8 bits with zeros.

Reserved Reserved 6'd0

Some of the AXI slave outbound sddress (MASTER_AXI_AWADDR) bits convey the
MSG_ROUTING and MSG_CODE fields of the message TLPs.

Table 23: MSG_ROUTING and MSG_CODE Fields

MASTER_ AXI_ AWADDR bits Vendor-Defined Message Normal Message

16 0: MSG with data
1: MSG without data

0: MSG with data
1: MSG without data

15 0: MSG_CODE = 0x7E
1: MSG_CODE = 0x7F

MSG_CODE[7]

14:12 MSG_ROUTING MSG_CODE[6:4]

11:8 Reserved MSG_CODE[3:0]

7:5 Reserved MSG_ROUTING

Outbound PCIe Descriptor Registers

These registers hold the static information in the TLP (e.g., function number, requester ID, etc.).

Table 24: desc0: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

3:0 Transaction type
0010: Memory I/O
0110: I/O

Transaction type
1010: Type 0 configuration
1011: Type1 configuration

Transaction type
1101: Vendor-defined
message

Transaction type
1100: Normal
message

6:4 PCIe attributes
[6] ID-based ordering
[5] Relaxed ordering
[4] No snoop

Same as Memory I/O TLP Same as Memory I/
O TLP

Same as Memory I/
O TLP

www.elitestek.com 47

TJ-Series PCIe Controller User Guide

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal
Message TLP

8:7 ATS[1:0] Reserved Bit 8: Carries bit [64]
of the vendor defined
message header.
Bit 7: Reserved.

Reserved for normal
messages.
Bit 8: Carries bit [64]
of the PRI message
header.

15:9 Reserved Reserved Carries [71:65] of
the vendor defined
message header.

Reserved for normal
messages.

16 If desc0 [8:7] bits are set to 2'b01 (i.e., it
is an ATS translation request) or if it is a
memory read request, this bit is used as
no write (NW) flag. In this case the address
must be aligned (i.e., address bits 11:0
must be reserved as per the PCIe protocol
specification).

Reserved Reserved Reserved

19:17 PCIe traffic class PCIe traffic class PCIe traffic class PCIe traffic class

20 When the request is a memory write
transaction, setting this bit causes the
PCIe Controller to poison the memory write
TLP being sent. This bit has no effect for
other transactions.

Reserved Reserved Reserved

21 Force ECRC insertion. Setting this bit to 1
forces the PCIe Controller to append a TLP
digest containing ECRC to the TLP, even
when ECRC is not enabled for the function
generating the request.

Same as Memory I/O TLP Same as Memory I/
O TLP

Same as Memory I/
O TLP

22 Reserved Reserved Reserved Reserved

23 Enables the client to provide the bus and
device numbers to be used in the requester
ID.
0: The PCIe Controller uses the captured
values of the bus and device numbers to
form the Requester ID.
1: The PCIe Controller uses the bus and
device numbers supplied by the client on
desc1[7:0] and desc0[31:27] to form the
requester ID.
This bit must always be set while originating
requests in root port mode, and the
corresponding bus and device numbers
must be placed on desc1[7:0] and
desc0[31:27].

1: The PCIe Controller uses
the bus and device numbers
supplied by the client on
addr0[27:20] and addr0[19:15] to
form the completer ID.
This bit must always be set while
originating requests in root port
mode, and the corresponding
bus and device numbers must
be placed on addr0[27:20] and
addr0[19:15].

Same as Memory I/
O TLP

Same as Memory I/
O TLP

31:24 PCI function number associated with the
request.
ARI mode: All 8 bits are used to indicate the
requesting function.
Non-ARI mode: Bits [26:24] represent the
function number.
The client must always specify the function
number regardless of the bit [23] setting.
Bits [31:27] specify the device number to be
used within the requester ID, when bit [23] is
set.

Reserved Same as Memory I/
O TLP

Same as Memory I/
O TLP

Table 25: desc1: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal Message TLP

7:0 When desc0[23] is set, this field must
specify the bus number to be used for
the requester ID. Otherwise, this field is
ignored.

Reserved Same as Memory I/O
TLP

Same as Memory I/O
TLP

www.elitestek.com 48

TJ-Series PCIe Controller User Guide

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal Message TLP

31:8 Reserved Reserved Reserved Reserved

Table 26: desc2: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal Message TLP

7:0 If index bit is 0 this value is taken as the TLP
steering tag for the hint.
If index bit is 1, this value [7:0] is used as a
pointer to the table holding the steering tag
values.

Reserved Reserved Reserved

8 Index bit Reserved Reserved Reserved

10:9 Value of PH [1:0] associated with the hint. Reserved Reserved Reserved

11 TPH length Reserved Reserved Reserved

12 Set when the request has a transaction
processing hint associated with it.

Reserved Reserved Reserved

20:13 Reserved Reserved Reserved Reserved

Table 27: desc3: Outbound PCIe Descriptor Register for Different TLP Accesses

Bits Memory and I/O TLPs Configuration TLP Vendor-Defined
Message TLP

Normal Message TLP

0 PASID present bit 1'b0 1'b0 1'b0

20:1 PASID value 20'd0 20'd0 20'd0

21 Privilege mode access requested 1'b0 1'b0 1'b0

22 Execute mode access requested 1'b0 1'b0 1'b0

31:23 Reserved Reserved Reserved Reserved

AXI Region Base Address Registers

The PCIe Controller uses region select logic to match the outbound AXI address and the
pre-programmed AXI address (in the AXI region base address registers for each region) to
determine the region to which it belongs. The matching is done from region 0 to <max regions> -
1. The comparator selects the first matching region as the region number used to pick the static
TLP information (PCIe descriptor) as well as the PCIe address (for address translation). The AXI
region sizes and region base addresses are programmable.

Note: Overlapping regions are not supported.

Table 28: AXI Region Base Address Registers

Register Bits Allocation Default

axi_addr1 31:0 Upper [63:32] bits of the AXI region base address. 32'd0

31:8 Lower [31:8] bits of the AXI region base address. 24'd0

7:6 Reserved 2'd0

axi_addr0

5:0 The programmed value in this field + 1 gives the region size. The minimum value to be
programmed into this field is 7 because the lower 8 bits of the AXI region base address are
replaced by zeros by the region select logic. The minimum region size is 256 bytes.

6'd0

All AXI regions has their start address aligned to the region size, which is programmed through
the AXI Region Base Address Register axi_addr0 [5:0]. If the select logic does not find a
match, the PCIe Controller responds with a DEC ERR over the AXI interface.

www.elitestek.com 49

TJ-Series PCIe Controller User Guide

Outbound Access through the Sideband Descriptor

This topic describes how to send an AXI outbound address packet directly—without doing any
address translation. This method is useful for dynamic address translations; that is, the client
does not have enough time to program one of the 32 region registers.

In this method, the PCIe Controller drives the translated outbound PCIe address (PCIe
descriptor) directly on MASTER_AXI_AWADDR and MASTER_AXI_ARADDR. It does not
perform address translation performed on the AXI address. A sideband access enable bit in
MASTER_AXI_AWUSER and MASTER_AXI_ARUSER gives the sideband access priority over the
region access.

Table 29: AXI Slave Sideband Signal Description (MASTER_AXI_AWUSER and
MASTER_AXI_ARUSER)

Bit Memory or I/O TLP Configuration TLP Message TLP

3:0 Transaction type:
0000: Memory read
0010: Memory write
0110: I/O write
0100: I/O read
All other values are reserved.

Transaction type:
1010: Type 0 configuration write
1000: Type 0 configuration read
1011: Type 1 configuration write
1001: Type 1 configuration read
All other values are reserved

Transaction type:
1100: Normal message
1101: Vendor-defined message
All other values are reserved

6:4 PCIe attributes associated with the
request.
4: No Snoop
5: Relaxed Ordering
6: IDO

Same as Memory or I/O TLP Same as Memory or I/O TLP

7 ATS bit 0 Reserved Reserved

15:8 8: ATS bit 1
15:9: Reserved

Reserved For vendor defined messages, this
field carries bits [71:64] of the message
header. For all other requests, this field
is reserved.

16 If bits [8:7] are set to 2'b01 (i.e.,
ATS translation request) and if it is a
memory read request, bit [16] is used
as a no write (NW) flag. In this case
the address must be aligned; that is,
address bits [11:0] must be reserved as
per the PCIe protocol specification.

Reserved Reserved

19:17 PCIe Traffic Class (TC) associated with
the request.

PCIe Traffic Class (TC) associated with
the request.

PCIe Traffic Class (TC) associated with
the request.

20 When the request is a memory write
transaction, setting this bit causes the
PCIe Controller to poison the memory
write TLP being sent. This bit has no
effect for other transaction types.

Reserved. Reserved

21 Force ECRC insertion. Setting this
bit to 1 forces the PCIe Controller to
append a TLP digest containing an
ECRC to the TLP, even when ECRC is
not enabled for the function generating
the request.

Same as Memory or I/O TLP Same as Memory or I/O TLP

www.elitestek.com 50

TJ-Series PCIe Controller User Guide

Bit Memory or I/O TLP Configuration TLP Message TLP

22 Enables the client to provide the bus
and device numbers to be used in the
requester ID.
0: The PCIe Controller uses the
captured values of the bus and device
numbers to form the Requester ID.
1: The PCIe Controller uses the bus
and device numbers supplied by the
client on bits [38:31] and [30:26] to
form the requester ID.
This bit must always be set while
originating requests in root port mode,
and the corresponding bus and device
numbers must be placed on bits
[38:31].

Same as Memory or I/O TLP Same as Memory or I/O TLP

30:23 PCI function number associated with
the request.
ARI mode: All 8 bits are used to
indicate the requesting function.
Legacy mode: Only bits [25:23] are
used, and bits [30:26] are used to
specify the device number to be used
within the requester ID, when bit [22] is
set.

Same as Memory or I/O TLP Same as Memory or I/O TLP

38:31 When bit [22] is set, this field must
specify the bus number to be used for
the requester ID. Otherwise, this field is
ignored.

Same as Memory or I/O TLP Same as Memory or I/O TLP

46:39 Reserved Reserved MSG CODE, 0x7E or 0x7F for vendor-
defined messages.

49:47 Reserved Reserved MSG routing

57:50 TPH ST TAG [7:0] TPH ST TAG [7:0] TPH ST TAG [7:0]

58 TPH INDEX TPH INDEX TPH INDEX.

60:59 TPH TYPE [1:0] TPH TYPE [1:0] TPH TYPE [1:0]

61 TPH length TPH length TPH length

62 TPH present TPH present TPH present

63 PASID present 1'b0 1'b0

83:64 PASID value 20'd0 20'd0

84 Privilege mode requested 1'b0 1'b0

85 Execute mode requested 1'b0 1'b0

86 Reserved Reserved Zero data message

MASTER_AXI_AWUSER Only
Valid bit to validate sideband access.
1: Descriptor is taken from [87:0]
0: Descriptor is taken from the region
registers.

Same as Memory or I/O TLP Same as Memory or I/O TLP87

MASTER_AXI_ARUSER Only
Valid bit to enable sideband access.

Valid bit to enable sideband access. Valid bit to enable sideband access.

Table 30: Generating Page Request Messages

Register Bits Field Name Description Default

addr1 31:0 Page Address Page address upper bits. 32'd0

addr0 11:8 [8:5] Page request group
index

Page request group index. 4'd0

www.elitestek.com 51

TJ-Series PCIe Controller User Guide

Register Bits Field Name Description Default

31:12 [31:12] Page address Page address. Contains the untranslated page address to be loaded.
For pages larger than 4,096 bytes, the least significant bits are
ignored. For example, for an 8,096 byte page, the least significant
bits are ignored.

20'd0

8 R Read access requested.
Set: The requesting function seeks read access to the associated
page.
Clear: The requesting function will not read the associated page.

1'b0

9 W Write access requested.
Set: The requesting function seeks write access and/or zero-length
read access to the associated page.
Clear: The requesting function will not write to the associated page.

1'b0

10 L Write access requested.
Set: The requesting function seeks write access and/or zero-length
read access to the associated page.
Clear: The requesting function will not write to the associated page.

1'b0

desc0

15:11 [4:0] Page request group
index

Page request group index. Contains a function provided identifier
for the associated page request. A function does not need ot use
all available PRG index values. A host shall never respond with a
PRG index that has not been previously issued by the function and
that is not currently an outstanding request PRG index (except when
issuing a response failure, in which case the host need not preserve
the associated request's PRG index value in the error response).

5'b0

Table 31: Generating Page Response Messages (addr1 Register)

Bits Field Name Description Default

8:0 PRG index Page request group index. This field contains a function provided index to which
the root port is responding. A given PRG index will receive exactly one response
per instance of PRG (with the possible exception of a response failure).

9'd0

15:12 Response code Contains the response type of the associated PRG.
0000b: Success
0001b: Invalid request
1110b: 0010b: Unused
1111b: Response failure
A detailed description of each response code is available in PCIe Specification.

4'd0

31:16 Destination ID Destination device ID. 16'd0

Table 32: Stop Marker Message (desc0 Register)

Bits Field Name Description Default

8 R Read access requested. Must be 1'b0. 1'b0

9 W Write access requested. Must be 1'b0. 1'b0

10 L Last request in PRG. 1'b1 1'b0

15:11 Marker type 4'b0000 4'd0

Table 33: Invalid Request Messages

Register Bits Field Name Description Default

addr1 31:16 Device ID Destination device ID 32'd0

www.elitestek.com 52

TJ-Series PCIe Controller User Guide

Register Bits Field Name Description Default

7:0 Untranslated address [63:56] - -

15:8 Untranslated address [55:48] 1'b0

23:16 Untranslated address [47:40] - -

31:24 Untranslated address [39:32] - -

39:32 Untranslated address [31:24] -

47:40 Untranslated address [23:16] -

55:52 Untranslated address [15:12] -

51 S Indicates if the range being invalidated is
greater than 4,096 bytes. Its meaning is the
same as for the translation completion.

Data 256,
128, 64 bit
bus

56 GI Global invalidate. Indicates that the invalidation
request message affects all PASID values.
The ATC ignores this bit if the global invalidate
supported bit is clear. This field is reserved if
PASID is not support by configuration.

desc1 28:24 ITAG Constrained to the values 0 to 31. Used by
the TA to uniquely identify requests it issues.
A TA must ensure that once an ITag is used,
it is not reused until either released by the
corresponding invalidate completions or by a
vendor-specific timeout mechanism.

5'd0

Table 34: Invalidation Completion Message

Register Bits Field Name Description Default

2:0 CC Completion Count. Indicates the number of individual invalidate
completion messages that must be sent for the associated
invalidate request. Setting the CC field to 0 indicates that eight
responses must be sent. The TA is responsible for collecting all
responses associated with a given tag before considering the
corresponding invalidate request to be complete.

3'd0addr1

31:16 Device ID Set to the TA's requester ID. 16'd0

desc0 15:8 ITAG vector [7:0] Indicate which invalidate request has been completed. Bit 0
corresponds to the ITag field value of 0.

8'd0

addr0 31:8 ITAG vector [31:8] - 24'd0

MSI Memory Writes

In endpoint mode, the client can request interrupt service by initiating message signaled
interrupts (MSI). MSI uses memory write requests (using the memory write request format)
to represent interrupt messages. The client generates the MSI memory write. The typical
procedure for initiating an MSI request is:

1. Host initializes the MSI capabilities of each function in the endpoint via configuration writes:

a. Host configures lower 32 address bits in the MSI Message Address Low Register.
b. Host configures upper 32 address bits in the MSI Message Address High Register.
c. Host configures data in MSI Message Data Register.
d. Host configures per-vector mask in MSI Mask Register.
e. Host enables MSI by configuring the MSI Control Register.

2. Check for MSI enable by sampling the MSI_ENABLE output. When a function's
MSI_ENABLE is 1, the function can generate an MSI.

3. Wait for a new outbound MSI request for a function or an MSI_MASK cleared event for a
pending MSI.

a. New MSI request, go to step 4.
b. Pending MSI request (mask has been cleared by the host), go to step 5.

www.elitestek.com 53

TJ-Series PCIe Controller User Guide

4. New outbound MSI request for a function:

a. Read the MSI address and data registers from the function's MSI Capability registers.
b. Check whether that the MSI vector is not masked by sampling MSI_MASK.
c. If masked, set the corresponding bit in the MSI Pending Bits Register using one of

these methods:

i. Use APB (default)—You can set or clear the MSI Pending Status Register bits by
writing to them through the APB interface.

ii. Set directly—You can set or clear the MSI Pending Status Register bits directly
using MSI_PENDING_STATUS_IN.

Note: You select the mode by programming bit [9] (MSI Pending Status In Mode Select) in the
Debug Mux Control 2 Register local management register.

iii. Go to step 2.
d. If not masked:

i. Allocate an MSI region on the AXI interface by programming the AXI region base
address registers.

ii. Program the AXI to PCIe address translation registers for the allocated MSI region
with the MSI address.

iii. Program the PCIe descriptor registers for the allocated MSI region with required
values mentioned in the Memory Write column of the PCIe descriptor registers
table.

iv. Generate an outbound write to the MSI region. The AXI write data is <MSI vector
number> + <MSI data register value>.

v. Go to step 2.
5. MSI mask is cleared for a pending MSI vector for a function:

a. Read the MSI address and data registers from the function's MSI capability registers.
b. Transmit the MSI vector:

i. Allocate an MSI region on the AXI interface by programming the AXI region base
address registers.

ii. Program the AXI to PCIe address translation registers for the allocated MSI region
with the MSI address.

iii. Program the PCIe descriptor registers for the allocated MSI region with required
values mentioned in the Memory Write column of the PCIe descriptor registers
table.

iv. Generate an outbound write to the MSI region. The AXI write data is <MSI vector
number> + <MSI data register value>.

c. Clear the corresponding bit in the MSI Pending Bits Register by writing to it through the
APB local management interface.

d. Go to step 2.

MSI-X Memory Writes

In endpoint mode, the client can request interrupt service by initiating MSI-X. MSI-X uses
memory write requests (using the memory write request format) to represent interrupt
messages. The client generates the the memory write. The typical procedure for initiating an
MSI-X request is:

1. Client sets up the location of the MSI-X table and MSI-X pending bit array in the endpoint
function's memory space:

a. Program the MSI-X table location in the MSI-X Table Offset Register.
b. Program the MSI-X pending bit array in the MSI-X Pending Interrupt Register.

2. Host initializes the function's MSI-X capabilities in the endpoint:

a. Host reads the MSI-X table location from the MSI-X Table Offset Register.
b. Host reads the MSI-X pending bit array location from the MSI-X Pending Interrupt

Register.
c. Host initializes the MSI-X vectors by writing to each of the MSI-X table locations.

www.elitestek.com 54

TJ-Series PCIe Controller User Guide

d. Host enables MSI-X in each function by configuring the MSI-X Control Register.
3. Check whether MSI-X is enabled by sampling MSIX_ENABLE.
4. When a function's MSIX_ENABLE is 1, the function can generate an MSI-X with the

following steps:

a. Read the MSI-X table entry for each vector to get the MSI-X address, data, and mask
settings for that MSI-X vector.

b. Check whether the MSI-X vector is not masked.
c. If masked, set the corresponding bit in the MSI-X pending bit array by writing the

corresponding bit in the pending bit array memory location.
d. If not masked:

i. Allocate an MSI-X region on the AXI interface by programming the AXI Region
Base Address Registers.

ii. Program the AXI to PCIe address translation registers for the allocated MSI-X
region with the MSI-X address.

iii. Program the PCIe descriptor registers for the allocated MSI-X region with required
values mentioned in the Memory Write column of the PCIe descriptor registers
table.

iv. Generate an outbound write to the MSI-X region. The AXI write data is the MSI-X
vector data.

Outstanding Non-Posted Requests
The AXI slave read and write interfaces (I/O and configuration requests in root port mode). can
send non-posted requests. The client should ensure that the sum of outstanding non-posted
requests over the two AXI slave interfaces is less than the maximum number of outstanding non-
posted requests that can be handled by the PCIe Controller's split completion table.

Note: The PCIe Controller back pressures the AXI slave interface in case the number of non-posted requests exceeds the
maximum that it can handle, which affects performance.

Ordering between AXI Slave Write and Read Channels
On the outbound direction, the PCIe Controller is in cut-through mode. The AXI logic has the
store and forward buffers. The PCIe Controller arbitrates outbound (read and write channels)
transactions it receives on the AXI slave interface after the asynchronous FIFO buffer for the
AXI slave write and read channels. If a read and a write request are both placed on the arbiter
in the same cycle, is a programmable priority bit in the local management space indicates which
request should be sent out on the link first.

Outbound Ordering (Endpoint)

Table 35: Endpoint Outbound Ordering

Non-Posted RequestRow Pass Column? Posted Request (Col 2)

Read Request
(Col 3)

NPR with
Data

(Col 4)

Completion
(Col 5)

Posted request No Yes N/A Yes

Read request Order presented on AXI(4) No N/A Yes/NoNon-posted
request

NPR with data N/A N/A N/A N/A

Completion Order presented on AXI(5) Yes N/A No

(4) To ensure that non-posted are not cross posted, your application should wait for a posted response before issuing non-posted requests.
(5) To ensure that completions are not cross posted, your application should wait for a posted response before issuing completions to the AXI master.

www.elitestek.com 55

TJ-Series PCIe Controller User Guide

Outbound Ordering (Root Port)

Table 36: Root Port Outbound Ordering

Non-Posted RequestRow Pass Column? Posted Request (Col 2)

Read Request
(Col 3)

NPR with Data
(Col 4)

Completion
(Col 5)

Posted request No Yes(6) No(7) Yes

Read request Order presented on AXI(8) No Yes Yes/NoNon-posted
request

NPR with data No Yes/No No Yes/No

Completion Order presented on AXI(9) Yes Yes No

If read and write transactions are serviceable (i.e., ready to be sent to the link) in the same clock
cycle, the Enable AXI Bridge Write Priority bit in Debug Mux Control register dictates whether the
write or the read is serviced.

● A write transaction is deemed serviceable from the asynchronous FIFO when all data
has reached the FIFO.

● A read transaction is deemed serviceable when the read transaction sits in the
asynchronous FIFO.

The completions from the AXI master interface are not ordered with respect to the read and write
transactions on the AXI slave interface. All three transactions constitute TLPs flowing outbound.

Completion Error Codes

Table 37: Completion Error Codes

Error Code Description

3'b000 Normal termination (all data received).

3'b001 The completion TLP is poisoned.

3'b010 Request terminated by a completion with UR, CA, or CRS status.

3'b011 Request terminated by a completion with incorrect byte count.

3'b100 The current completion being delivered has the same tag as an outstanding request; however, its requester ID, TC,
or Attr fields did not match the parameters of the outstanding request.

3'b101 Starting address error. The low address bits in the completion TLP header did not match the starting address of the
next expected byte for the request.

3'b110 Invalid tag. This completion does not match the tags of any outstanding request.

3'b111 Request terminated by a completion timeout or by an FLR targeted at the function that generated the request.

Completion Status Codes

Table 38: Completion Status Codes

Status Code Description

00 Good.

01 Unsupported request (UR).

10 Completer abort.

11 Retry status.

(6) When a non-posted request is blocked, a posted request can pass it.
(7) The posted packets are blocked if non-posted packets are stuck in the pipeline.
(8) If the write is blocked, the read can go ahead of the write. If there is an address overlap between the write and read, your application can wait for the

write response before giving the read.
(9) If the posted request is blocked, the completion can pass the posted request.

www.elitestek.com 56

TJ-Series PCIe Controller User Guide

AXI Master and Slave Read/Write Length Limitations
For outbound transfers:

● Reads are limited by minimums (AXI_SLAVE_MAX_RD_TRANSFER_SIZE,
MAX_READ_REQUEST_SIZE). The PCIe Controller AXI bridge cannot
handle read requests if the outbound read request length is greater than
MAX_READ_REQUEST_SIZE.

● Writes are limited by AXI_SLAVE_MAX_WR_TRANSFER_SIZE. If
AXI_SLAVE_MAX_WR_TRANSFER_SIZE is greater than MAX_PAYLOAD _SIZE—and
the outbound write request length is greater than MAX_PAYLOAD _SIZE—the write
requests are split at MAX_PAYLOAD_SIZE boundary.

For inbound transfers:

● Writes are limited by MAX_PAYLOAD_SIZE. If AXI_MASTER_MAX_WR_TRANSFER_SIZE
is less than MAX_PAYLOAD_SIZE and the inbound packet length is greater
than AXI_MASTER_MAX_WR_TRANSFER_SIZE, requests are split into
AXI_MASTER_MAX_WR_TRANSFER_SIZE packets. The same AXI ID is assigned to all
split packets.

● Reads are limited by MAX_READ_REQUEST_SIZE. If
AXI_MASTER_MAX_RD_TRANSFER_SIZE is less than MAX_READ_REQUEST_SIZE and
the inbound packet length is greater than AXI_MASTER_MAX_RD_TRANSFER_SIZE,
requests are split into min(AXI_MASTER_MAX_RD_TRANSFER_SIZE,
MAX_PAYLOAD_SIZE) packets. The same AXI ID is assigned to all split packets.
The splits measure a length of min(AXI_MASTER_MAX_RD_TRANSFER_SIZE,
MAX_PAYLOAD_SIZE). The start address is aligned to an RCB boundary and the
next address is calculated by adding min(AXI_MASTER_MAX_RD_TRANSFER_SIZE,
MAX_PAYLOAD_SIZE).

Note: MAX_PAYLOAD_SIZE and MAX_READ_REQUEST_SIZE are host-configured values in the device control register.
AXI_MASTER_MAX_RD_TRANSFER_SIZE, AXI_MASTER_MAX_WR_TRANSFER_SIZE are the maximum transfer sizes for the
AXI master.
AXI_SLAVE_MAX_RD_TRANSFER_SIZE, AXI_SLAVE_MAX_WR_TRANSFER_SIZE are the maximum transfer sizes for the AXI
slave.

Interrupt Interface
The interrupt interface has a master interface (root port mode) and a target interface (endpoint
mode). The master interrupt interface communicates the interrupt events signaled by
downstream endpoints to a local interrupt controller. The target interrupt interface allows
endpoint clients to signal their interrupt state to a remote root port.

Legacy Interrupt Operation
In legacy mode, the PCIe Controller emulates the four PCI interrupt pins (INTA_IN, INTB_IN,
INTC_IN, and INTD_IN). Multiple functions can share the same interrupt pin. On the endpoint
side, the client signals interrupt conditions to the PCIe Controller using four distinct interrupt
inputs.

www.elitestek.com 57

TJ-Series PCIe Controller User Guide

Figure 22: Legacy Endpoint Interrupt Interface

Function

Function

Function

Function

INTA_IN
INTB_IN
INTC_IN
INTD_IN

INT_PENDING_STATUS
INT_ACK

ClientPCIe Controller

One bit per Function

Interrupts

The PCIe Controller communicates the state of each interrupt input by sending Assert_INTx
or Deassert_INTx messages on the PCIe link. It sends an assert message when the
corresponding interrupt input transitions from low to high, and sends a de-assert message when
the input transitions back to low. The high-to-low transition usually occurs when the interrupt has
been serviced.

After signaling each transition, the client must wait for the PCIe Controller to assert INT_ACK
before signaling another transition on the same interrupt pin.

You can modify the default interrupt assignments by writing to the Interrupt Pin register through
the local management bus.

The client must provide the interrupt pending status of each of its functions to the
PCIe Controller through the PCIe Controller's INT_PENDING_STATUS input, so that the status
can be read from the PCIe link through the function's PCI Status Register. The client must set
INT_PENDING_STATUS high when there is an interrupt pending from the function, and set it low
when the interrupt has been serviced.

Note: You cannot use MSI or MSI-X interrupts when using legacy interrupts. The client must also check the state of the INTx
disable bits in the associated function's PCI Command Register before generating a legacy interrupt. The INTx disable bit states
are available in the PCIe Controller's FUNCTION_STATUS output.

MSI and MSI-X Interrupt Modes
As a root port, the PCIe Controller receives MSI or MSI-X messages from downstream
endpoints. It processes the messages like a normal memory write request received from the
link. The PCIe Controller transfers the address and data associated with the (message) memory
write request over the same target memory write interface used to transfer normal memory write
requests. Software running in the root port is responsible for monitoring the writes to the MSI-
assigned area in memory and servicing the interrupts.

MSI Interrupts
In this mode, the interrupt conditions are communicated from the endpoint to the root port via
messages. When an interrupt condition occurs, the endpoint sends a message with information
that identifies the interrupt's origin. Each message has an address and a data value to be
written. Each PCI function supported by a device can be assigned a separate memory address,
thus providing separate virtual channels for each function that generates interrupts. Additionally,
MSI allows (and the PCIe Controller supports) a maximum of 32 distinct data patterns in the
messages generated by each PCI function, and each pattern can be assigned to an interrupt
condition within the function.

On the endpoint side, the client signals an interrupt condition via the AXI slave interface. The
client constructs an AXI write transaction with the configured address and data value in the MSI
capability structure. The client should assign the address to a region register that translates
the AXI write transaction into a PCIe memory write TLP. The PCIe Controller then forwards
the memory write TLP to the link. The PCIe Controller also supports 32 mask bits and pending
interrupt bits for each function. When an interrupt condition occurs, the client should check that
the corresponding mask bit is not set before sending the AXI write transaction. The client should

www.elitestek.com 58

TJ-Series PCIe Controller User Guide

read the MSI address data values from the MSI capability structure after the enumeration to
construct MSI write TLPs to be sent on the AXI slave interface.

On the root port side, the PCIe Controller decodes MSI messages received from the link and
passes them to the client through the AXI master interface as normal write requests.

MSI-X Interrupts
This mode is similar to MSI, except MSI-X allows a much larger number of distinct interrupt
conditions to be communicated—as many as 2,048 per function—and lets you define a distinct
address for each conditions. MSI-X requires the endpoint's memory to store two tables:

● The MSI-X table contains the address and data patterns to be used for each interrupt
condition as well as individual enable/mask bits.

● The pending bit array (PBA) table stores the status of each interrupt condition.

Interrupt conditions are communicated from the endpoint to the root port via messages (write
requests) like MSI mode. The PCIe Controller supports MSI-X interrupts by providing a
dedicated interface to the client on the endpoint side to send MSI-X messages. The MSI-X table
and PBA must be stored in client memory. When an MSI-X message is to be sent, the client
communicates the message's address and data information to the PCIe Controller via an AXI
slave write transaction. The client should assign the address to a region register that translates
the AXI write transaction into a PCIe memory write TLP. The PCIe Controller then forwards the
memory write TLP to the link.

On the root port side, the operation is similar to MSI mode. The PCIe Controller decodes MSI-X
messages received from the link and passes them to the client through the AXI master interface
as normal write requests.

Interrupt Sideband Signals
These signals let you generate custom interrupt signals. You can OR required signals from
this vector to form interrupt signals. These signals are already masked internally using the
corresponding mask bits given in the local management space for each kind of error.

Table 39: Interrupt Sideband Signals

Bit Description

0 AXI slave reorder SRAM ECC uncorrectable error.

1 AXI slave WFIFO SRAM ECC uncorrectable error.

2 AXI master RFIFO SRAM ECC uncorrectable error.

3 Replay RAM parity error.

4 PNP RX FIFO parity error.

5 Completion RX FIFO parity error.

6 PNP RX FIFO pverflow.

7 Completion RX FIFO pverflow.

8 Replay timeout.

9 Replay timer rollover.

10 PHY error.

11 Malformed TLP received.

12 Unexpected completion received.

13 Flow control error.

14 Completion timeout.

15 This bit is set when the host toggles the Hardware Autonomous Width Change bit in the Link Control Register
through a configuration write.

16 Unmapped TC error.

17 Set when the MSI mask register value in the MSI capability register changes value in any of the PCIe Controller's
functions.

www.elitestek.com 59

TJ-Series PCIe Controller User Guide

Bit Description

18 Set whenever the MSI-X function mask register value in the MSI-X capability register changes in any of the
PCIe Controller's functions.

19 Set whenever any bit in the MSI mask register is cleared in any of the PCIe Controller's functions.

20 Set whenever any bit in the MSI mask register is set in any of the PCIe Controller's functions.

21 Set whenever the MSI-X function mask register is cleared in any of the PCIe Controller's functions.

22 Set whenever the MSI-X function mask register is set in any of the PCIe Controller's functions.

23 Set when a NFTS timeout occurs during Rx_L0s exit.

24 Uncorrectable error detected in SC table state RAM protect module.

25 Uncorrectable error detected in SC table timer RAM protect module.

26 Uncorrectable error detected in SC table byte count RAM protect module.

27 Link equalization requests interrupt.
Endpoint. Indicates that the PCIe Controller has detected a problem with equalization and automatically requests
an equalization retry at the end of equalization.
Root port: Reserved.

www.elitestek.com 60

TJ-Series PCIe Controller User Guide

Clock Sources
The main PCIe Controller clock is derived directly from the PMA PLL; the clock frequency is
configuration dependent. For example, the PCIe Gen4 configuration requires the PCIe Controller
to run at 500 MHz.

The PCIe Controller clock domain is transparent to the user application.

Table 40: Clock Sources

Clock Direction Frequency (MHz) Descriptions

AXI_CLK Input 125 - 250 AXI interface clock.

USER_APB_CLK Input 20 - 200 APB interface clock.

PM_CLK Output 40 Free-running clock used for low power state transitions.

The AXI_CLK clock can be derived from a PLL output. However, you need to ensure that the
AXI_CLK frequency complies with the PCIe link total bandwidth. For example, four lanes of
Gen4 run at a 64 Gbps link bandwidth. To fully utilize the link bandwidth, AXI_CLK must operate
at 250 MHz in your application.

The USER_APB_CLK clock can also be derived from a PLL output.

The PM_CLK is used for power management. The PCIe Controller outputs PM_CLK so you can
utilize the same clock resource.

All clocks are asynchronous; the PCIe Controller handles the clock synchronization internally.

In the Efinity Interface Designer the PCIe block has an option Reference clock from on-board
crystal. Elitestek recommends that you turn this option off when using a reference clock slot
from a PCIe slot to ensure that stable reference clock is present during PHY configuration. When
this option is disabled, you need to create a PLL instance with a specific PLL resource and
settings as the temporary PCIe reference clock while the PHY is configuring. When the PHY
completes configuration, the reference clock reverts to the edge card connector.

If you turn this option off, use these settings:

● Create a PLL block with a resource of BR0 or BR1.
● Enable:

— CLKOUT4 signal if you are using QUAD 0.
— CLKOUT2 signal if you are using QUAD 2.

●

● Configure the PLL in local feedback mode.

You can use the CLKOUT4 signal as a clock source for core logic after the PHY completes
configuration.

www.elitestek.com 61

TJ-Series PCIe Controller User Guide

Link Control
The following topics describe the process for link up, link down, and reset.

Link Up
Upon power on reset, the PCIe Controller is ready for link training in 100 ms. After the PERST#
signal is deasserted, the PCIe link goes through training and achieves link active (L0) state in
another 100 ms.

Figure 23: PCIe Controller Link Up Mechanism

CRESET_N

Power Supplies

PERST#

FPGA State

PCIe State

Reset Interface Config. Core Configuration (1) User Mode

Reset Link Training Link up to L0

a

b

c

Parameter
a

b (2)
c

Min.
10

100
-

Typ.
-
-
-

Max.
500

-
100

Description
CRESET_N release time after power supplies are stable.
Minimum PERST# signal active time from the PCIe host.
Maximum time required for the PCIe device to enter the
L0 state after PERST# is released.

Units
µs
ms
ms

1. The core configuration length depends on the configuration mode. In some modes the FPGA enters user mode
before the PCIe link up.

2. To meet b, Efinix recommends you use SPI passive programming or SPI active programming with the following
configuration:

Programing Mode External Clock Frequency (MHz) Internal Oscillator CLock Divider

SPI active x1 8.04 DIV4, DIV2, DIV1

SPI active x2 4.04 DIV8, DIV4, DIV2, DIV1

SPI active x4 2.04 DIV8, DIV4, DIV2, DIV1

SPI active x8 1.04 DIV8, DIV4, DIV2, DIV1

Link Down and Reset
When the link goes down or is disabled or upon hot reset, the PCIe Controller internally
generates a link down reset, which clears all of its internal state machines, timers, and control
registers. In the PCIe defined configuration register space, all registers, except those that are
sticky, are also reset upon link down reset.

The PCIe Controller's AXI interface handles the link down reset as follows:

● When the PCIe Controller detects a link down reset, it seets the Link Down Indication Bit
in the AXI register space.

● The AXI interface responds to the client with a SLVERR response while the Link Down
Indication Bit is set.

● All write requests from the application (via the AXI slave interface) are consumed by the
AXI interface and return a SLVERR response.

www.elitestek.com 62

TJ-Series PCIe Controller User Guide

● All read requests are completed with a generated zero data pattern and return SLVERR
response.

Additionally, the PCIe Controller aserrts the LINK_DOWN_RESET_OUT output signal upon a
link down event. Your user application can monitor this signal to know when there is a link
down event. For example, the client may have to reset its own FIFO buffers, registers, or state
machines when the link is down. Firmware should clear the Link Down Indication Bit to restart
any valid traffic after the negative edge of LINK_DOWN_RESET_OUT.

The AXI address translation registers are not cleared upon link down reset. These registers hold
their programmed values and you do not need to re-program them.

Note: Refer to "AXI Configuration Registers" in the TJ-Series PCIe Controller Registers User Guide for the register
descriptions.

Reset Types
There are three reset types: cold reset, warm reset, and hot reset. These resets cause link down
conditions.

For warm and hot reset, the PCIe Controller, except sticky registers, goes into reset. The rest of
the FPGA design remains operational. For a cold reset, the entire FPGA is reset.

Cold Reset
When the FPGA is reset, for example by power cycling, it triggers a cold reset for the
PCIe Controller.

Warm Reset
When PERST_N is asserted, it triggers a warm reset for the PCIe Controller. The
PCIe Controller, except sticky registers, undergoes a reset. The rest of the FPGA remains
operational.

During a warm reset, the PCIe Controller issues a reset request to soft logic and IP cores
connected to it. Your user application must observe the reset handshake, and return a relevant
RESET_ACK to allow the PCIe Controller to complete the warm reset procedure.

Hot Reset
During a hot reset, the PCIe Controller, except sticky registers, undergoes a reset. The rest of
the FPGA remains operational.

● In root port mode, the HOT_RESET_IN input initiates a hot reset sequence on the
PCIe link. The root port application can assert and hold HOT_RESET_IN high until the
LINK_DOWN_RESET_OUT output goes high.

● In endpoint mode, asserting LINK_DOWN_RESET_OUT triggers a hot reset.

When you trigger a hot reset, the PCIe Controller issues a reset request to soft logic and IP
cores connected to it. Your user application must observe the reset handshake, and return a
relevant RESET_ACK to allow the PCIe Controller to complete the hot reset procedure.

Reset Handshake
When a warm or hot reset occurs, the PCIe Controller sends a reset request by driving the
RESET_REQ output high. When RESET_REQ goes high, the user application can delay the
assertion of RESET_ACK, for example, to provide sufficient time to power down the application.
However, the user application must indicate its readiness for reset by asserting RESET_REQ,
which tells the PCIe Controller to proceed with the warm or hot reset.

Once the reset event is served, the PCIe Controller de-asserts RESET_REQ, at which point the
user application must deassert RESET_ACK.

www.elitestek.com 63

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

TJ-Series PCIe Controller User Guide

De-asserting PERST_N triggers the PCIe Controller's internal sequence to exit from reset and
subsequently perform PCIe training and link up.

Figure 24: Reset Handshake

PERST_n

Internal Clock

Internal State

RESET_REQ

RESET_ACK
(user input)

Normal
Operation

Warm
Request

Warm
Reset

Release
Warm
Reset

PCIe
Training and

Link Up

>100 ms

When RESET_REQ is asserted, the reset request is sent to all affected IP cores (including soft
IP) and the core fabric.

● When the soft IP receives the reset request, it should evaluate its readiness and assert
RESET_ACK.

● The user appliication should hold RESET_ACK asserted until the PCIe Controller de-
asserts RESET_REQ.

● When RESET_REQ deasserts, the user application should deassert RESET_ACK.

When all affected soft IP cores assert RESET_ACK, the actual reset event occurs and the
affected reset domains are reset.

Function-Level Reset (FLR)
FLR enables the user application to reset a specific function on the endpoint; the FLR only
affects the targeted function. When a specific VF is reset, only that VF's resources are reset.
When a PF is reset, all of the PF's resources, including those of its associated VFs, are reset.
The link state is not affected by an FLR.

Note: Refer to Function-Level Reset Signals on page 105 for a detailed description of the signals.

The following figure shows the handshake of FLR_DONE and FLR_IN_PROGRESS in PF3, and is
applicable to any PFs/VFs undergoing FLR.

www.elitestek.com 64

TJ-Series PCIe Controller User Guide

Figure 25: FLR Handshake

FLR_IN_PROGRESS
(Output to User)

AXI_CLK

FLR_DONE
(Input from User)

Internal FLR State

EP Receive TLP
to FLR at PF3

FLR and Internal
Reprogramming at PF3

Idle

1 3

2

When the host sets the FLR bit in an endpoint function's device control register with a CfgWr,
the PCIe Controller first responds with the completion. Then it initiates the FLR. The affected
function's configuration registers are reset as described in the PCIe specification.

The PCIe Controller asserts the FLR_IN_PROGRESS and VF_FLR_IN_PROGRESS outputs to the
user application, indicating the PFs and VFs that received a FLR.

When the PCIe Controller asserts FLR_IN_PROGRESS[n], the user application must clear
any pending transactions associated with the function (PF/VF) being reset. Then, the user
application must assert FLR_DONE[n] and hold FLR_DONE[n] high until the de-assertion
of FLR_IN_PROGRESS[n]. At the same time, the associated PF/VF undergoes an internal
re-programming and retrieves the original user configurations. Upon the assertion of
FLR_DONE[n] from both ends (user and internal reprogramming), the PCIe Controller de-asserts
FLR_IN_PROGRESS[n], at which time the user application must de-assert FLR_DONE[n].

Note: The client must complete the FLR within 100 ms, as required by the PCIe specification.

While the FLR_IN_PROGRESS and VF_FLR_IN_PROGRESS outputs are high, any configuration
or memory or I/O requests the function receives are silently discarded as permitted by the PCIe
specification.

Each function's Bus Master Enable bit in the Command Register is also reset upon FLR. The
client can only restart outbound traffic after the host sets the Bus Master Enable bit through a
CfgWr.

In the event of an FLR, requests on the AXI interface are handled as follows:

● In progress write requests complete normally. The client should not initiate any
additional write requests from the function under FLR.

● Read requests from the affected function return SLVERR on RRESP.
● The AXI address translation registers are not affected by FLR for any function.

Concurrent FLR Request in Multiple PFs/VFs
If an FLR is triggered concurrently in multiple PFs/VFs, the PCIe Controller asserts the
associated FLR_IN_PROGRESS[n].

For example, if an FLR is triggered concurrently in PF1 and PF3:

1. The PCIe Controller asserts FLR_IN_PROGRESS[1] and FLR_IN_PROGRESS[1].
2. The user application must clear pending transactions associated with PF1 and PF3.
3. The user application must assert FLR_DONE[1] and FLR_DONE[3], and hold them high

until FLR_IN_PROGRESS[1] and FLR_IN_PROGRESS[3] de-assert, respectively.

www.elitestek.com 65

TJ-Series PCIe Controller User Guide

Reset During an FLR
If a warm or hot reset occurs during an FLR, the reset takes precedence and all PFs
undergo reset. In this event, the user application must monitor for the de-assertion of
FLR_IN_PROGRESS[n], and de-assert FLR_DONE[n].

Power Management
The PCIe Controller supports several power management techniques, as described in the
following topics. Refer to the PCIe specification mandated features and their usage in a PCI
system.

Function Power States
The PCIe Controller supports the PCI function power states D0 (uninitialized and active), D1,
and D3hot.

By default, the PCIe Controller sets the Power Management Control Register's No Soft Reset
bit for all enabled functions to 1. This setting means that the function's state is not lost when it is
in the D3hot power state, and its registers do not need to be re-configured when the function is
goes back to D0. The PCIe specifications recommend setting this bit for all functions.

When a root port changes an endpoint's power state form D0 to a non-D0 state, the
PCIe Controller asserts POWER_STATE_CHANGE_INTERRUPT. Before asserting
POWER_STATE_CHANGE_ACK, the client must ensure that no new request are issued to
the PCIe link after the acknowledge is asserted. This functionality is required per the PCIe
Specification.

Figure 26: Asserting POWER_STATE_CHANGE_INTERRUPT
Root Port

(CDN DUT)
Endpoint

(CDN DUT)
Client
Logic

CfgWr changes
from D0 to D3

Cpl on PCIe Link

POWER_STATE_CHANGE_INTERRUPT
Is Set

POWER_STATE_CHANGE_ACK
Is Set

Wait or abort new operations;
this function should not issue
any new requests to the PCIe
link after ACK.

L0s Power State
L0s entry and exit is an autonomous process, and has very low exit latency compared to the
other link power states. In this state, the PCIe Controller automatically initiates entry into ASPM
L0s if the TX is idle (i.e., no TLPs and no DLLPs to be transmitted) for a programmable time
period. For the transition to occur:

● Endpoints—ASPM L0s must be enabled in the Link Control Register of the configuration
spaces of all enabled functions.

● Root port—ASPM L0s must be enabled in the Link Control Register of the
PCIe Controller root port register set.

www.elitestek.com 66

TJ-Series PCIe Controller User Guide

Note: You can enable L0s in the Interface Designer (PCI Express block > Pins tab > Power Management sub-tab > Enable
Power Management).
During operation, you can update the setting using the APB interface. Enable or disable active-state power management
(ASPM) L0s by setting the Active State Power Management Control (bit [0]) in the Link Control and Status Register.

Important: You cannot enable active state power management (ASPM) if SRIS is enabled.

You can program the L0s entry timeout using the L0s Timeout Limit Register local management
register. The transition from L0 to L0s happens after a time period programmed in the L0s
Timeout Limit Register elapses with no TLP or DLLP being transmitted. Setting the L0s Timeout
Limit Register to 0 disables the transition to L0s state.

L1 Power State
The L1 link power state savess more power at the expense of more latency compared to the L0s
state.

Entering L1 via ASPM
ASPM L1 is an autonomous process; entry and exit happens without any user handshaking.
You can enable or disable ASPM L1 by setting the Active State Power Management Control (bit
[1]) in the Link Control and Status Register. The PCIe Controller automatically initiates entry into
ASPM L1 if the TX side is idle (i.e., no TLPs from the client and no replay TLPs pending) for a
programmable time period. SPM L1 entry operates as follows:

1. When the link TX is idle, the endpoint PCIe Controller begins incrementing the ASPM
L1 entry timer internally. If the client requests to transmit a TLP, the timer is immediately
cleared.

2. When the ASPM L1 entry timer reaches the programmed value in the ASPM L1 Entry
Timeout Delay Register, the PCIe Controller checks whether sufficient credits are
accumulated.

3. The PCIe Controller blocks new TLPs and initiates ASPM L1 entry by sending
PM_Active_State_Request_L1 DLLPs to its transmit lanes.

4. The PCIe Controller continuously transmits the PM_Active_State_Request_L1 DLLP until it
receives a response from the upstream device.

5. The upstream device must immediately respond to the request with an acceptance
(PM_Request_Ack) or rejection (PM_Active_State_Nak).

6. If the upstream device rejects with a 'PM_Active_State_Nak message, the PCIe Controller
aborts the ASPM L1 entry and continues to send TLPs normally.

7. If the upstream device accepts with a PM_Request_Ack message, the PCIe Controller puts
its TX into electrical idle and enters ASPM L1.

8. The upstream device detects the electrical idle and puts its TX into electrical idle as well.

For the transition to ASPM L1 to occur:
● Endpoints—You must enable ASPM L1 in the Link Control Register of all the enabled

functions.
● Endpoints—You must enable the L1 power state in the Link Control Register of the

PCIe Controller's root port register set.

ASPM L1 entry timeout is programmable through the ASPM L1 Entry Timeout Delay Register
local management register. The L1 Timeout[19:0] field contains the timeout value (in 16 ns units)
for transitioning to the ASPM L1 power state. Setting it to 0 disables the transition to the ASPM
L1 power state.

Entering L1 via PCI-PM
When the PCIe Controller is configured as an endpoint, the PCI power management operation is
as follows:

1. The PCIe Controller operates normally with all functions in the D0 active state.

www.elitestek.com 67

TJ-Series PCIe Controller User Guide

2. The remote root port writes to the Power Management Control Register for all enabled
functions, which transitions the function(s) to the non-D0 power state.

3. When all functions are in the non-D0 state, the PCIe Controller initiates a link power state
transition to L1 by transmitting PM_Enter_L1 DLLPs.

4. After the data link layer handshake, the link transitions to the L1 state.

While the link is in L1 state and the PCIe Controller's functions are in D1 or D3hot, the link
partner can transition the link from L1 to L0 at any time. The PCIe Controller can then optionally
initiate a re-entry back to L1 if the link has been idle for a set interval and the PCIe Controllers
functions are still in D3hot. The re-entry to L1 is controlled by the delay programmed in the L1
State Re-entry Delay Register in the local management space. Setting this register to a non-zero
value causes the PCIe Controller to initiate entry back to L1 when a delay equal to the number of
clock cycles programmed in this register has elapsed with no link activity. Setting this register to
0 prevents re-entry to L1. The initial transition to L1 (step 3 above) is not affected by this register
setting.

L1 Exit Triggers
The following events trigger an L1 exit:

● Electrical idle exit detection.
● New requests at the AXI interface.
● Assertion of side-band signal CLIENT_REQ_EXIT_L1.
● The root port initiates the retraining request using the link control register).

ASPM Exit
Any L1 exit triggers an L1 exit process and there is no handshake required from the client.

PCI-PM Exit
Any L1 exit triggers change the link power state to L0. However, an additional root port to
endpoint handshake is required for normal operation after reaching L0.

For a root port initiated PM L1 exit:

1. Root port initiates a configuration write to change the endpoint function's power state to D0.
2. This configuration write triggers an L1 exit on the link.
3. The endpoint device also exits from L1 and responds with CPL.
4. Normal data transfer can happen on the PCIe link.

For an endpoint initiated PM L1 exit:

1. The endpoint initiates a PM_PME message to the root port to request a power state
change.

2. The message triggers an L1 exit on the link.
3. After receiving this message, the root port initiates a configuration write to change the

endpoint function's power state to D0.
4. The endpoint device responds with CPL.
5. Normal data transfer can happen on the PCIe link.

L1 Register Programming
The following registers contain information about the L1 state:

● Entering L1—The Low Power Debug and Control Register 0's L1 Entry Mode field in
the local management space gives information about the last L1 entry mode. You can
determine whether PM or ASPM was used to enter L1. This field is reset before each L1
entry operation.

● Exit trigger for L1 (or L1 substate)—The Low Power Debug and Control Register 0's L1,
L1.x Exit Reason field in the local management space gives information about the last
L1 or L1 substate exit triggers. This field is reset before each L1 entry operation.

www.elitestek.com 68

TJ-Series PCIe Controller User Guide

Blocking L1 Explicit Client Exit or Endpoint Entry
The client can trigger an explicit L1 exit by asserting CLIENT_REQ_EXIT_L1. This signal
triggers an exit to L0 from L1 or L1-substates. A new request at the AXI interface also triggers an
L1 exit event internally.

You can also use this signal to block L1 entry in when the PCIe Controller is in endpoint mode.
Blocking L1 entry is useful when a client wants to disable L1 entry to reduce latency for its
outstanding operations.

Refer to L1 Interface Signals on page 109 for the signal description.

Figure 27: Exiting from L1 with CLIENT_REQ_L1_EXIT

AXI_CLK

Recovery L0L1 IdleLTSSM

CLIENT_REQ_EXIT_L1

Recovery

Figure 28: Blocking L1 Entry with CLIENT_REQ_L1_EXIT

Reference Clock

L1 Entry L1 IdleL0LTSSM

CLIENT_REQ_EXIT_L1

L1 Entry
Handshake

Client Process
with Less Latency

L1 Power Substates
The PCI-SIG L1 Power Management Substates ECN defines an optional mechanism to reduce
idle power in the L1 link state by defining L1 substates to facilitate removing power from the
PHY, and clocks to the PCIe Controller. The L1 PM substates are enabled when the link enters
L1 due to PCI power management or ASPM.

There are two L1 substates:
● The L1.1 substate allows you to turn off clocks and most of the PHY power, but it

requires the PHY to maintain common-mode voltages on the TX side.
● The L1.2 substate enables further reduction in idle power by not requiring common-

mode voltages to be maintained.

Both L1.1 and L1.2 states allow you to turn off the PHY's electrical idle detection circuitry.

The L1 PM substates use the CLKREQ# sideband signal to control the clocks. The CLKREQ#
signal is an open-drain, active-low signal shared by the upstream and downstream ports, and
either side can assert it by driving it low. This signal enables the clock generator. The core clock
is turned off when both sides de-assert their CLKREQ# outputs.

The PCIe Controller has the CLKREQ_IN_N input and a CLKREQ_OUT_N output to implement the
tri-state CLKREQ# pin. The CLKREQ_OUT_N output, when low, enables the tri-state driver driving
the CLKREQ# pin, causing assertion of the shared signal. The port on the other side can also

www.elitestek.com 69

TJ-Series PCIe Controller User Guide

assert CLKREQ# by driving it low. The PCIe Controller monitors the state of this shared signal
through the CLKREQ_IN_N input, as shown in the following figure.

Figure 29: L1 PM Substates Block Diagram

L1 PM
Substates
Machine

PHY_ENT_L1_X
PHY_ACK_L1_X

PHY_RX_ELEC_IDLE_DET_EN
PHY_TX_CMN_MODE_EN

PM_CLK
PCIe Controller

LTSSM

PHY

Peer
Component

CLKREQ#

CLKREQ_IN_N
CLKREQ_OUT_N

PIPE Interface

PCIe Link

L1_PM_
SUBSTATE_OUT

Because the core clock is turned off in the L1.1 and L1.2 substates, a separate power
management clock (PM_CLK) drives the L1 PM substates state machine. This clock must always
be active, regardless of the link's power state. There is no requirement on the relative phase of
this clock with respect to the other PCIe Controller clocks.

The L1 PM substates state machine also provides the handshake signals PHY_ENT_L1_X and
PHY_ACK_L1_X to prepare the local PHY for the removal of the reference clock. The state
machine asserts the PHY_ENT_L1_X output in the L1.0 substate when it has determined that the
conditions for transition to the L1.1 or L1.2 substates are met. It then waits for the PHY to assert
PHY_ACK_L1_X before de-asserting CLKREQ_OUT_N and entering L1.1 or L1.2 substates.
During L1.1 or L1.2 exit, the PCIe Controller de-asserts PHY_ENT_L1_X to the PHY and waits
for the corresponding de-assertion of PHY_ACK_L1_X before transitioning to the L1.0 state.
This step is required to ensure that the PHY is fully operational and the clocks are stable before
entering L1.0. For the case of L1.2, the PHY handshake is performed while in the L1.2 exit
substate.

Note: De-asserting PHY_ENT_L1_X changes the PHY state from the L1 substate to L1.0. Make sure that the PHY has a stable
reference clock during the exit process.

The L1 PM substates state machine provides an output signal PHY_RX_ELEC_IDLE_DET_EN
to inform the PHY when to enable its electrical idle detection circuits on the RX side. The
PCIe Controller asserts this output in all states except when the L1 PM substates state machine
is in the L1.1, L1.2.Entry, and L1.2.Idle substates.

The L1 PM substates state machine also provides an output signal PHY_TX_CMN_MODE_EN to
enable common mode on the PHY TX. The PCIe Controller de-asserts this output when the L1
PM substates state machine is in the L2.Idle substate, and asserts it at all other times.

Entering L1 Substate
L1 substate entry is initiated when the link is in L1 and CLKREQ# from the upstream and
downstream components are de-asserted. The PCIe Controller enters L1.1 or L1.2 depending
on which substate is enabled in the L1 PM Substate Control registers.

CLKREQ_OUT_N is de-asserted in both L1 substates. When the remote device also de-asserts
CLKREQ#, the core clock is turned off by the clock controller in the user domain.

Exiting L1 Substate
Either side can initiate a transition out of the L1 substate. The remote side initiates an L1 PM
substate exit by asserting its CLKREQ# output. This assertion turns on the core clock and asserts

www.elitestek.com 70

TJ-Series PCIe Controller User Guide

the PCIe Controller's CLKREQ_IN_N input, causing its L1 PM substate to change to L1.0 and
enabling the transition of the LTSSM from L1 into recovery. The client can also initiate the L1
exit.

The following events trigger an L1 substate exit:

● Remote device initiated exit triggers:
— Assert CLKREQ#.
— Detect an electrical idle exit (only during entry into L1.1 or L1.2 substates before

PHY_RX_ELEC_IDLE_DET_EN is deasserted).
● Locally initiated exit triggers:

— New requests at the AXI interface.
— New register access requests.
— Assertion of sideband signals CLIENT_REQ_EXIT_L1_SUBSTATE or

CLIENT_REQ_EXIT_L1.

The L1 substate exit triggers change the link from L1.1 or L1.2 state to L1.0 and then to L0.

L1.1 Operation
The PCIe Controller enters L1.1 when L1.1 entry conditions are true and L1.2 entry conditions
are false. The following diagram illustrates L1.1 entry and locally initiated exit process.
CLIENT_REQ_EXIT_L1 represents all local exit triggers.

Download: You can enable L1.1 in the Interface Designer (PCI Express block > Pins tab > Power Management sub-tab >
PM L1.1 Substate Enable).
It is possible to enable/disable L1.1 with the APB interface, however, you must follow the rules described in L1 Substate
Register Programming on page 75 for the power transitions to work correctly.

Figure 30: L1.1 Entry and Locally Initiated Exit

L1 L1 L1 L1 Recovery

L1.0 L1.0 L1.1 L1.1 L1.1 L1.0

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

When the conditions for entering the L1.1 substate are met, the L1 PM substates state machine
first performs a handshake with the PHY using the PHY_ENT_L1_X and PHY_ACK_L1_X
signals to prepare the PHY for the removal of the reference clock. Once the PHY has asserted
PHY_ACK_L1_X, the PCIe Controller de-asserts CLKREQ_OUT_N. If the link partner also
de-asserts its CLKREQ# output, the core clock becomes inactive and the PCIe Controller's
CLKREQ_IN_N input is de-asserted. The L1 PM substates state machine transitions to L1.1
when CLKREQ_IN_N goes high.

Any local L1 substate exit triggers bring the PCIe Controller back to the L1.0 state. During
exit, the PCIe Controller asserts CLKREQ_OUT_N to turn on the core clock, thereby asserting
CLKREQ_IN_N. When CLKREQ_IN_N goes low, the L1 PM substates state machine performs
another handshake with the PHY by de-asserting PHY_ENT_L1_X and waiting for the PHY to
respond by de-asserting PHY_ACK_L1_X. This handshake is necessary to prepare the PHY

www.elitestek.com 71

TJ-Series PCIe Controller User Guide

for the re-activation of the reference clock. Once this handshake has been completed, the PHY
transitions back to the L1.0 substate.

Figure 31: L1.1 Entry and Exit Initiated by Link Partner

L1 L1 L1 L1 Recovery

L1.0 L1.0 L1.1 L1.1 L1.1 L1.0

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

The previous figure illustrates the operation when the link partner initiates the exit from L1. The
PCIe Controller enters L1.1 from L1.0 when the entry conditions for L1.2 are not satisfied and
the entry conditions for L1.1 are satisfied. After completing the PHY_ENT_L1_X/ PHY_ACK_L1_X
handshake with the PHY, the PCIe Controller de-asserts CLKREQ_OUT_N. If the link partner
also de-asserts its CLKREQ# output, the core clock becomes inactive and the PCIe Controller's
CLKREQ_IN_N input is de-asserted, causing the L1 PM substates state machine to enter the
L1.1 state.

The link partner initiates the transition of the link from the L1 state by asserting its CLKREQ#
outputt, resulting in the assertion the PCIe Controller's CLKREQ_IN_N input. When
CLKREQ_IN_N goes low, the L1 PM substates state machine prepares the PHY for exit from
L1.1 by de-asserting PHY_ENT_L1_X and waiting for the PHY to de-assert PHY_ACK_L1_X.
When this handshake is completed, the L1 PM substates state machine transitions to the L1.0
substate. Meanwhile, the assertion of CLKREQ# results in the core clock becoming active, which
enables the LTSSM to move out of L1 into recovery.

L1.2 Operation
The following figure illustrates the sequence for the L1 PM substates state machine to enter the
L1.2 substate.

www.elitestek.com 72

TJ-Series PCIe Controller User Guide

Download: You can enable L1.1 in the Interface Designer (PCI Express block > Pins tab > Power Management sub-tab >
PM L1.2 Substate Enable).
It is possible to enable/disable L1.2 with the APB interface, however, you must follow the rules described in L1 Substate
Register Programming on page 75 for the power transitions to work correctly.

Figure 32: L1.2 Substate Entry

L1 L1 L1

L1.0 L1.0 L1.2 Entry L1.2 Entry

LTSSM_STATE

pm_clk

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

L1.2 Idle

TPOWER_OFF

If the entry conditions for L1.2 are satisfied, it first performs the handshake with the PHY using
the PHY_ENT_L1_X and PHY_ACK_L1_X signals to prepare the PHY for the removal of the
reference clock. Once the PHY has asserted PHY_ACK_L1_X, the PCIe Controller de-asserts
CLKREQ_OUT_N. If the link partner also de-asserts its CLKREQ# output, the core clock becomes
inactive and the PCIe Controller's CLKREQ_IN_N input is de-asserted. The L1 PM substates
state machine transitions to L1.2.Entry when the CLKREQ_IN_N input goes high. While the L1
PM substates state machine is in the L1.2.Entry substate, it monitors the CLKREQ_IN_N input
and transitions back to L1.0 if it is asserted. If CLKREQ_IN_N remains de-asserted, the state
machine stays in the L1.2.Entry substate for an interval TPOWER_OFF (2 ms) and then transitions
to L1.2.Idle.

When the L1 PM substates state machine is in L1.2.Idle, the client or the link partner can initiate
a transition of the link out of the L1-substate. The following figure shows the operation of the

www.elitestek.com 73

TJ-Series PCIe Controller User Guide

L1.2 substates when there is an exit trigger from the client. CLIENT_REQ_EXIT_L1 represents
all local exit triggers.

Figure 33: L1.2 Substate Locally Initiated Exit

L1 L1 L1

L1.2 Idle L1.2 Idle L1.2 Exit L1.2 Exit

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

L1.0L1.2 Entry

TPOWER_ONMinimum TL12

Any one of the local exit triggers initiates the L1.2 exit process. The PCIe Controller first asserts
CLKREQ_OUT_N to turn on the core clock, resulting in CLKREQ_IN_N becoming asserted. When
CLKREQ_IN_N goes low, the L1 PM substates state machine transitions to L1.2.Exit.

While in L1.2.Exit, the L1 PM substates state machine performs the PHY_ENT_L1_X/
PHY_ACK_L1_X handshake with the PHY to prepare the PHY for the re-introduction of the
clocks, and subsequently transitions back to L1.0. The L1 PM substates state machine must
stay in L1.2.Exit for a minimum interval of TPOWER_ON. The duration of this interval is determined
by the setting of the TPOWER_ON value and scale parameters in the L1 PM Substates Control 2
Register. The interval can vary from 0 to 3,100 ms.

Figure 34: L1.2 Substate Exit Initiated by Link Partner

L1 L1 L1

L1.2 Idle L1.2 Idle L1.2 Exit L1.2 Exit

LTSSM_STATE

PM_CLK

L1_PM_SUBSTATE_OUT

PHY_ENT_L1_X

PHY_ACK_L1_X

CLKREQ_IN_N

CLKREQ_OUT_N

CLIENT_REQ_EXIT_L1

PHY_RX_ELEC_IDLE_DET_EN

PHY_TX_CMN_MODE_EN

core clk

L1.0L1.2 Entry

TPOWER_ONMinimum TL12

Recovery

The previous figure illustrates the operation when the link partner initiates the exit from L1.
When in L1.2.Idle, the link partner initiates the transition of the link from L1 by asserting its
CLKREQ# output, resulting in the assertion of the PCIe Controller's CLKREQ_IN_N input. When
CLKREQ_IN_N goes low, the L1 PM substates state machine transitions to L1.2.Exit (after
satisfying the minimum 4 μs stay in L1.2.Idle). After completing the handshake with the PHY for

www.elitestek.com 74

TJ-Series PCIe Controller User Guide

re-enabling its clocks and staying in L1.2.Exit for a minimum interval of TPOWER_ON, the L1 PM
substates state machine then transitions to L1.0.

L1 Substate Register Programming
The following table provides guidance to program specification-defined registers. Refer to the
TJ-Series PCIe Registers User Guide for the full list of registers. Registers with prefix Port and
capability registers are read-only when accessed from the PCIe link. These registers are writable
through the local management interface. You need to initialize these registers to match PHY and
system electrical characteristics. These registers are used by the standard system initialization
software to program RW control registers in the endpoint and root port L1 substate capability
space.

Table 41: Root Port Inbound PCIe to AXI Address Translation Registers for 1 BAR

Register Name Guide to Select the Value Who Updates Issues with Wrong Values

Port
T_POWER_ON
Value and Scale

Port's PHY T_POWER_ON value. For example,
TP1.2_to_P1 value in the PHY.

Client's controller
and PHY
initialization
firmware

PCIe system initialization software
uses this value to program the
T_power_on register.

T_POWER_ON
Value and Scale

Maximum of (endpoint Port_T_power_on, root port
Port_T_power_on).

Host's PCIe
system
initialization
software

If the value is lower than required,
one device drives into an unpowered
remote device, which can result in a
link down event. The LTSSM moves
to detect the state.

Port Common
Mode Restore
Time

Time required for the port's PHY to establish common
mode actively during the transmission of TS1s. For
example, in the PHY this value is t_common_mode.

Local client's
controller and
PHY initialization
firmware.

Initialization software uses this value
to program the Common Mode
Restore Time register.

Common Mode
restore Time

Maximum of (root port port common mode restore time,
endpoint port common mode restore time).

PCIe system
initialization
software

If the value is lower than required,
one device drives into an unpowered
remote device, which can result in a
link down event. The LTSSM moves
to detect the state.

LTR_L1_2
_threshold Value
and Scale

This register is used if LTR and ASPM L1.2 are enabled.
It is the worst-case latency a request would face to get
completed in the presence of L1.2. Refer the LTR section
of the PCIe specification for the LTR usage.
An example calculation is:
LTR_L1_2_threshold = <service request latency>
+ 2 * (TL1.2 + TL1O_REFCLK_ON
+ TP1_to_P0 + TCOMMONMODE + 2 μs)
Where:
<service request latency> is the worst case delay for the
root port to respond to a read request or to accept a WR
request;
TL1.2 is the minimum time to stay in L1.2 (4 μs)
TL1O_REFCLK_ON is the CLKREQ# assertion
to reference clock valid when exiting L1.2. This is
TPOWER_ON + any additional time the system needs to
enable the reference clock.
TP1_to_P0 is the time the PHY needs to change the
power state from P1 to P0.
TCOMMONMODE is the same as the Port Common
Mode Restore Time Register.
The accountable margin for latency in the
PCIe Controllerand handshake is 2 μs.
The equation multiplies by two to account for the L1.2
exit that a request and/or completion might require.

PCIe system
initialization
software

ASPM L1.2 entry happens only when
the endpoint's LTR requirement is
larger than this threshold. Incorrect
programming of the threshold can
cause unexpected latency for the
endpoint requests.

www.elitestek.com 75

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG

TJ-Series PCIe Controller User Guide

Delayed Entry
You can delay entry to L1 substates with the Low Power Debug and Control Register 0/ L1
Substate Entry Delay field in the local management space. The PCIe Controller responds to an
L1 exit event while waiting for this delay to expire.

Wait for Outstanding Completions before Entry
The PCIe Controller can wait for outstanding completions by using the Low Power Debug and
Control Register 1/ Enable Outstanding CPL Check field in the local management space. The
PCIe Controller waits for outstanding packets from the client and PCIe link. The PCIe Controller
can respond to normal L1 exit triggers while waiting for outstanding completions. This field is
normally not required unless you wants to fine tune latency for completions.

Wait for Empty Receive Buffers before Entry
The PCIe Controller can wait for receive buffers to be empty before entering an L1 substate.
You use the Low Power Debug and Control Register 1/ Enable RX Path Check field in the local
management space. The PCIe Controller can respond to normal L1 exit triggers while waiting
for receive buffers. This field is normally not required unless you wants to fine tune latency for
incoming packets from the PCIe link. You do not have to set this field because packets resume
draining from receive buffers once the clocks resume during an L1 substsate exit.

Prevent Exit During Register Access
The core clock turns off during L1 substates. The register interface needs the core clock to
respond to register access requests. Therefore, an L1- substate exit is triggered by default
while accessing registers. You can change this behavior with the Low Power Debug and Control
Register 1/ Disable Autonomous L1.x Exit upon Reg Access field in the local management
space. This field is mostly helpful for debugging.

Explicit Client Exit or Entry Block
The client can trigger an explicit L1 substate exit by asserting
CLIENT_REQ_EXIT_L1_SUBSTATE. This signal triggers an exit from L1 substates to L0 if the
PCIe Controller is already in an L1 substate. The PCIe Controller waits in L1 for this signal to
become de-asserted before entering an L1 substate. The PCIe Controller responds to normal L1
exit triggers while it waits for de-assertion .

You need to use this signal if the L1 substate shuts off clocks that drive new requests to the AXI
interface. Elitestek highly recommends that you implement client hardware logic to assert this
signal before initiating a new TLP or register access from the client. Hardware logic reduces
overhead on firmware or software drivers. This signal is also useful if you want to block L1
substate entry to reduce latency for any pending outstanding operations.

Refer to Table 74: L1 Substrate Interface on page 109 for the signal description.

www.elitestek.com 76

TJ-Series PCIe Controller User Guide

The following figures explain the use of this signal. L1.x means L1.1 or L1.2.

Figure 35: L1.2 Using CLIENT_REQ_L1_EXIT_SUBSTATE to exit from L1.x

L1 Idle L0

L1.0L1.x InactiveL1.x ExitL1 Substate

CLIENT_REQ_EXIT_L1_SUBSTATE

LTSSM

Reference Clock

L1 Exit
Process

L1.x Exit
Process

Figure 36: Using CLIENT_REQ_L1_EXIT_SUBSTATE to block L1.x entry

L0 L1 Idle

Inactive L1.x EntryL1.0L1 Substate

CLIENT_REQ_EXIT_L1_SUBSTATE

LTSSM

Reference Clock

Client Process
Blocking L1.x

L1 Entry
Process

L1 Entry

Integration Details
You can turn off the core clock in an L1 substate. To operate, the L1 substate requires PM_CLK.
Client firmware needs to program PM_CLK. Use the Frequency Register/PM_CLK Frequency
Select field in the local management register to change the PM_CLK frequency. You can only
change PM_CLK frequency when LTSSM is not in L1.

By default, if there is a register access when the PCIe Controller is in the L1 substate, the
PCIe Controller exits the L1 substate and responds to the register access request. The
PCIe Controller moves to L0 and after servicing the register access request it goes back into
the L1 substate. If the user firmware is performing polling and does not want this behavior,
you can disable this feature by using the Low Power Debug and Control Register 1/ Disable
Autonomous L1.x Exit upon Reg Access field in the local management space. If this field is
set, the PCIe Controller gives an APB error response upon register access when it is in an L1
substate. The only reason for an error response for valid addresses at the APB interface is if a
clock is not available. An error response is only available with the APB interface.

L2 Power State
For the PCIe Controller, L2 is a power saving state. It is a pseudo-L2 state because you cannot
completely remove power from the PCIe Controller. You can suppress transition to the L2 state
by holding REQ_PM_TRANSITION_L23_READY low.

Entering L2
Entering L2 from a non-D0 state is cleaner and the PCIe Controller can automate the handshake
process with the host. The PCIe specification has provisions to enter L2 from D0. D0 is a normal
operating state. L2 entry while a function's power state is D0 requires the client to respond to the
host.

The following steps illustrates L2 entry from all allowed function power states.

www.elitestek.com 77

TJ-Series PCIe Controller User Guide

1. The remote root port sends a PME_Turn_Off message to the PCIe Controller.
2. The PCIe Controller delivers the PME_Turn_Off message to the client through the

AXI message interface (for AXI configurations) or target-request interface (for non-AXI
configurations).

3. When ready, the client transmits the PME_TO_Ack message to the root port via the client
master interface with the following steps:

a. Wait for the client target request interface to receive a PME_Turn_Off message.
b. Read the function's power state from the Power Management Control/Status Register

configuration register.
c. Check the programmed value of PME Turnoff Ack Delay[15:0] in the local management

register space.
d. If the Function Power State == 'D0' or if the PME Turnoff Ack Delay == 0x0000, the

PCIe Controller does not transmit the PME_TO_Ack message (see following note).
● Client firmware should ensure that there are no PCIe transfers active in the

PCIe subsystem.
● Client sends a PME_TO_ACK message over the client master request

interface.
e. If the condition in step (d) is not true, the PCIe Controller automatically transmits a

PME_TO_Ack message after the PME Turnoff Ack Delay time. The client must not
send PME_TO_ACK.

4. Optionally, the client can now change the PCIe Controller's power state to L23_Ready by
asserting REQ_PM_TRANSITION_L23_READY. This assertion causes the PCIe Controller's
LTSSM to transition to L2 and enables the client to power down the PCIe Controller
completely. The client has to assert REQ_PM_TRANSITION_L23_READY until the LTSSM
moves into L2.

Note: If any enabled PF is in the D0 power state, there may be PCIe transfers outstanding in the system for that PF. In this
case, the PCIe Controller does not automatically transmit PME_TO_Ack.

Wake Up or Exiting L2
The PCIe Controller supports systems that use a wake-up mechanism. The client shall capture
the PCIe Controller's PME context before sending the PME_TurnOff Acknowledge message to
the root port. The client must store the PCIe Controllers bus number and device number from
local management before acknowledging PME_TurnOff. The client must specify the Requester
ID of the PME message sent when power is re-applied to the PCIe Controller and the link
reaches L0. The following sequence describes the process of supporting WAKE#.

1. Assume the PCIe Controller is in L2. The client is maintaining the PME context and
requester ID using a client that is powered by VAUX or full power.

2. The client can decide to wake up the PCIe Controller. The client drives the WAKE# out-of-
band signal to tell the power management controller that the PCIe Controller requires power
to be re-applied.

Note: The WAKE#signal is external to the PCIe Controller and is not used by it.

3. Assert PERST_N to bring the PCIe Controller into warm reset. Then, de-assert PERST_N
to reapply the internal power in the PCIe Controller. Follow the reset sequence shown in
Figure 24: Reset Handshake on page 64.

4. The client restores any PME context to the PCIe Controller registers via the local
management interface.

5. Prevent the PCIe Controller from transmitting the PM_PME message automatically by
programming bit [20] (Disable PME Message on PM Status) to 1 in the Local Management
Register PME Service Timeout Delay Register.

Note: Set the Disable PME Message on PM Status bit to 1 before setting the PME Status bit to 1.

6. The client sends a PM_PME message over the client interface using the requester ID that
was captured before entering L2.

www.elitestek.com 78

TJ-Series PCIe Controller User Guide

7. The root complex can perform a configuration write to the PCIe Controller to move the
device from the D3hot state.

Configuring Registers with the APB Interface
The PCIe Controller has a 32-bit APB bus, which is accessible by the user application. The
protocol is per the APB v1.0 specifications.

You configure the PCIe Controller's interfaces and features with the Efinity Interface Designer,
which sets the corresponding bits in the configuration registers. The PCIe Controller uses these
settings during power up or cold reset. If you want to change the setting during operation, you
can set the register bits through the APB interface.

You enable the APB interface in the Interface Designer (PCI Express block > Pins tab > APB
sub-tab > Enable Advanced Peripheral Bus).

Figure 37: Configuration and Management Registers

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 0

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 1

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 2

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Register Set 3

PCI v3.0
Configuration

Registers

PCI Express
Configuration

Registers

Root Complex Register Set

AP
B

In
te

rfa
ce

Local Management Registers

AXI Address Translation Registers

Configuration
Requests from Link

Completions
to Link

APB
Bus

Table 42: Global Address Map for Local Management Bus (apb_paddr)

[23] [22] [21] [20] [19:12] [11:0]

0 0 0 0 0 PCIe Physical Function 0 Registers

0 0 0 0 1 PCIe Physical Function 1 Registers

0 0 0 0 2 PCIe Physical Function 2 Registers

0 0 0 0 3 PCIe Physical Function 3 Registers

0 0 0 0 4 67 PCIe Virtual Function 0-63 Registers

0 0 0 0 68 255 Reserved

0 0 0 1 0 PCIe Local Management Registers

www.elitestek.com 79

TJ-Series PCIe Controller User Guide

[23] [22] [21] [20] [19:12] [11:0]

0 1 0 0 x PCIe AXI Configuration Registers

1 0 0 0 0 PCIe Root Port Registers

1 0 1 0 0 PCIe Root Port Registers. In this mode, certain RO fields in the
configuration space can be written. Please see documentation of
the RC mode registers below for more information.

These register addresses are DWORD addresses. In write operations, individual bytes can
be addressed with byte-enable bits. Any addresses not defined are reserved. A configuration
access from the link to a reserved address causes the PCIe Controller to return a completion
packet with a UR (unsupported request) completion code. A read from the local management
bus to a reserved address returns all zeros, and a write to a reserved address does not modify
any of the registers. All registers (with the exception of reserved or hardwired fields) are writable
from the local management bus.

Note: Refer to the TJ-Series PCIe Controller Registers User Guide for a detailed description of the registers.

Configuration Snoop Interface
The PCIe Controller has configuration space registers for each function as defined in the
PCIe specifications. It supports PCI-compatible configuration space as well as PCIe extended
space registers. The PCIe Controller automatically builds a linked list of capability structures,
depending on the features you choose when configuring the PCI Express block in the Efinity
Interface Designer.

Learn more: Refer to the TJ-Series Interfaces User Guide for detail on configuring the PCI Express block in the Interface
Designer.

During the enumeration process, the host can traverse through the PCIe Controller's linked
list of structures to find out which features are supported. Root port software uses the same
capability structures for control and status information. The PCIe configuration read/write TLPs
are used for this purpose. The PCIe Controller maps an incoming configuration read/write TLP
to a read/write access to the internal configuration space registers. The control fields of various
capability structures route to different PCIe Controller layers so that the logic can use the control
information as expected.

The PCIe Controller also has an optional configuration snoop interface that lets you implement
your own register set in the PCIe configuration space. The interface snoops incoming
configuration read/write TLPs received from the link and places them on a simple configuration
snoop read/write interface. You can enable the configuration snoop interface in the Interface
Designer.

Note: You obtain the actual configuration register address by multiplying the CONFIG_REG_NUM value by 4. For example, a
configuration space address of 0xa00 equates to a value on CONFIG_REG_NUM of 0x280.

For a configuration write transaction, the interface places the address and data on the
configuration snoop interface and asserts the CONFIG_WRITE_RECEIVED signal for one clock

www.elitestek.com 80

https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiPCIeREG
https://www.efinixinc.com/support/docsdl.php?s=ef&pn=UG-TiINTF

TJ-Series PCIe Controller User Guide

cycle. If the PCIe Controller implements the register being accessed, the write data is updated
internally.

Figure 38: Configuration Snoop Interface Write Waveform

REG_NUM

FUNCTION_NUM

WRITE_DATA

WRITE_BYTE_ENABLE

CONFIG_REG_NUM[9:0]

core clk

CONFIG_FUNCTION_NUM[7:0]

CONFIG_WRITE_RECEIVED

CONFIG_WRITE_DATA[31:0]

CONFIG_WRITE_BYTE_ENABLE[3:0]

For configuration read transactions, the interface places the address on the configuration snoop
interface and asserts the CONFIG_READ_RECEIVED signal for one clock cycle. If you want to
provide the read data externally for this address, your user application must place the data on
the CONFIG_READ_DATA[31:0] read data bus and assert CONFIG_READ_DATA_VALID on the
first clock cycle after CONFIG_READ_RECEIVED is sampled high. The externally-provided data
is sent back in the completion TLP. If the CONFIG_READ_RECEIVED input is not asserted by the
user application, the PCIe Controller returns the data from its registers.

Figure 39: Configuration Snoop Interface Read Waveform

REG_NUM

FUNCTION
_NUM

READ_DATA

CONFIG_REG_NUM[9:0]

core clk

CONFIG_FUNCTION_NUM[7:0]

CONFIG_READ_RECEIVED

CONFIG_READ_DATA[31:0]

CONFIG_READ_DATA_VALID

0 1

If you need more clock cycles for the configuration snoop read, you set a local management
register bit. Set the Enable Extended Config Snoop Read bit in the Debug Mux Control 2
Register to 1 to change the read interface timing as shown in the following figure. If you want
to provide the read data externally for this address, the user application must place the data
on the CONFIG_READ_DATA[31:0] read data bus and assert CONFIG_READ_DATA_VALID
within the specified number of clock cycles after CONFIG_READ_RECEIVED is sampled. If

www.elitestek.com 81

TJ-Series PCIe Controller User Guide

CONFIG_READ_DATA_VALID is not asserted within the window, the PCIe Controller sends the
data placed in the internal registers to the completion TLP.

Figure 40: Extended Configuration Snoop Interface Read Waveform

REG_
NUM

FUNCTION
_NUM

CONFIG_REG_NUM[9:0]

AXI_CLK (1)

CONFIG_FUNCTION_NUM[7:0]

CONFIG_READ_RECEIVED

CONFIG_READ_DATA[31:0]

CONFIG_READ_DATA_VALID

0 1

n Cycles (1)

AXI_CLK
(MHz)
125
160
200
250

Clock
Cycles
0 - 2
0 - 5
0 - 7

0 - 10

Note: This mechanism is not intended to completely replace a capability structure. A capability structure has many control fields
that the PCIe Controller uses throughout its layers for specification-mandated operation.

The control fields are routed from the internally implemented registers to the various parts of the
PCIe Controller. Therefore, replacing a capability structure entirely outside the PCIe Controller is
not possible.

Vendor-Specific Extended Capability (VSEC)
The PCIe specification strongly recommends that PCIe devices do not place in the configuration
space any registers other than those that are architected by the PCIe specification.

Device-specific registers that need to be placed in configuration space (e.g., they need to be
accessible before memory space is allocated) can be placed in the Vendor-Specific Extended
Capability (VSEC) structure in PCIe extended configuration space. This structure lets you use
the extended capability mechanism to expose vendor-specific registers; for example, vendor-
specific features that are used in a series of components from that vendor. A VSEC structure
can tell vendor-specific software which features a particular component supports, including
components developed after the software was released.

The PCIe Controller implements the VSEC register structure with 8 bytes of vendor-specific
registers. Additionally, it provides a custom interface to help you access the vendor-specific
registers directly, including:

● PCI Express Extendeed Capability Register
● Vendor-Specific Header
● Vendor-Specific Registers

Per the PCIe specification, the vendor-specific register structure and definition is determined
by the vendor, indicated by the vendor ID field located at byte offset 00h in the PCI-compatible
configuration space. The number of bytes of vendor-specific registers are advertised in the
VSEC Length field.

The PCIe Controller implemetns 8 bytes of vendor-specific registers in:

● i_vendor_specific_control_reg, address @0x408

www.elitestek.com 82

TJ-Series PCIe Controller User Guide

● i_vendor_specific_data_reg0, address @0x40c

Table 43: i_vendor_specific_control_reg Fields

Bits Attributes Descriptions

7:0 RO These bits are read only for the host. The client can control these bits with the
F0_VSEC_CONTROL_IN[7:0] input. The host's vendor-specific software can access these bits with
a configuration read.

8 RW These bits are read/write for the host. The host's vendor-specific software can access these bits
with a configuration read or write. Bit 8 drives the PCIe Controller's F0_VSEC_INTERRUPT_OUT
output.

31:9 RW These bits are read/write for the host. The host's vendor-specific software can access
these bits with a configuration read or write. Bits [31:9] drive the PCIe Controller'
F0_VSEC_CONTROL_OUT[22:0] output.

Table 44: i_vendor_specific_data_reg0 Fields

Bits Attributes Descriptions

31:0 RW These bits are read/write for the host. The host's vendor-specific software can access these bits
with a configuration read or write.

● F0_VSEC_CONTROL_IN—This input drives bits [7:0] of the vendor-specific registers.
The value to be driven on this input and its applications are specific to the user
application.

● F0_VSEC_INTERRUPT_OUT—This output is driven by bit [8] of the vendor-specific
registers in the PF0 vendor-specific capability structure. The signal is available for the
user application; for example, the host can use it to signal a software-driven interrupt to
the client application outside the PCIe Controller.

● F0_VSEC_CONTROL_OUT—This output is driven by bits [31:9] of the vendor-specific
registers in the PF0 vendor-specific capability structure. The signal is available for the
user application; for example, the host can ujse this signal to indicate vendor specific
control data to the client application outside the PCIe Controller.

www.elitestek.com 83

TJ-Series PCIe Controller User Guide

Configuration Guide
The following topics provide example of how to access the memory space.

AXI Outbound Access Example
The following figure shows the outbound AXI memory map with three region partitions and their
corresponding base address and region size.

Figure 41: Outbound AXI Address Map for TLP Accesses

64’H0000_0000_0000_0000

64’H0000_0000_0000_0FFF

64’H0000_0000_0010_0000

64’H0000_0000_001F_FFFF

64’H0000_0000_0020_0000

64’H0000_0000_002F_FFFF

Region 0
Configuration TLP Region
4 Kbytes, 12 bits

Region 1
Memory TLP Region
1 Mbytes, 20 bits

Region 2
Message TLP Region
1 Mbytes, 20 bits

Base Address

Base Address

Base Address

The actual region type is assigned after you program the Outbound PCIe Descriptor Registers
with correct values for each TLP type as described in Table 24: desc0: Outbound PCIe
Descriptor Register for Different TLP Accesses on page 47. You program the base address
and region size into the Table 28: AXI Region Base Address Registers on page 49 for the
corresponding region number.

For this example, the values to program in the AXI Region Base Address Registers are shown in
the following table.

Table 45: AXI Region Base Address Register Values

Region Number TLP Type desc0[3:0] AXI_ADDR0[5:0] AXI_ADDR0[31:8] AXI_ADDR1[31:0]

0 (Configuration TLP) b'1010 6'd11 24'h00_0000 32'h0000_0000

1 (Memory or I/O TLP) b'10 6'd19 24'h00_1000 32'h0000_0000

2 (Message TLP) b'1100 6'd19 24'h00_2000 32'h0000_0000

Accessing the Configuration TLP
There are two methods to convey the BDF (completer ID) information for a configuration TLP.
Configuration TLPs are always routed to the endpoint's PCIe configuration space.

Method 1
This method uses the bus number, device number, and function number and the registers
described in Outbound AXI to PCIe Address Translation Registers. You can drive the
configuration register address on the MASTER_AXI_AW/RADDR[11:0] bits. Program the pass
bits or addr0 [5:0] of the Table 21: ob_addr1 Outbound AXI-to-PCIe Address Translation
Registers on page 47 as 6'd11 so that the lower 12 bits are taken from MASTER_AXI_AW/

www.elitestek.com 84

TJ-Series PCIe Controller User Guide

RADDR. In this case, the BDF information is programmed in the corresponding region's (region 0
in this example).

Table 46: BDF Value Programming for Configuration TLPs through Outbound AXI to PCIe Address
Translation Register

BDF values to be programmed in the addr0 register for legacy and ARI mode.

Legacy Mode ARI Mode

addr0 bits Value addr0 bits Value

27:20 Bus number 27:20 Bus number

19:15 Device number 19:12 Function number

14:12 Function number

Note: With this method, the AXI region size should be at least 4K bytes. Program addr0[31:28] and addr1[31:0] to zero.

Method 2
This method uses the bus number, device number, and function number from the
MASTER_AXI_AW/RADDR. Program addr0[5:0] of the Table 21: ob_addr1 Outbound AXI-
to-PCIe Address Translation Registers on page 47 to 6'd27 so that the lower 28 bits of the
AXI address are passed to the PCIe Controller directly. These bits include the BDF values as
indicated in the following table.

Table 47: BDF Values Programming for Configuration TLPs through the MASTER_AXI_AW/RADDR

Legacy Mode ARI Mode

MASTER_AXI_AW/ RADDR bits Value MASTER_AXI_AW/ RADDR bits Value

27:20 Bus number 27:20 Bus number

19:15 Device number 19:12 Function number

14:12 Function number

Note: With this method, the AXI region size should be at least 256 Mbytes (28 bits) because the BDF information is passed
through the bits [27:12] of the MASTER_AXI_AW/RADDR or AXI address. Program addr0[31:28] and addr1[31:0] to zero.

Programming the Outbound PCIe Descriptor Register
When you program the outbound PCIe Descriptor Register, you assign a specific TLP type to
the region number. For this example, follow the values to be programmed in the region 0 desc0,
desc1, desc2, and desc3 registers given in the Table 24: desc0: Outbound PCIe Descriptor
Register for Different TLP Accesses on page 47 Configuration TLPs column.

Address Translation
Consider a different example where the AXI configuration TLP address map does not start at
64'h0000_0000_0000_0000. Use the PCIe Controller's address translation feature to translate
the addresses to the requester id and configuration register number.

Table 48: PCIe Configuration Write and I/O Write Requests

Signal Example 1 Example 2

MASTER_AXI_ADDR 0x4 0x0

MASTER_AXI_WSTRB 0xF0 0x0F

www.elitestek.com 85

TJ-Series PCIe Controller User Guide

Example 1
In this method the AXI region has a region size of 4K bytes (lower 12 bits of AXI address). The
BDF information is captured from the region registers. This method is best for smaller BDFs; that
is, the PCIe configuration space is enough to handle it.

Figure 42: Outbound AXI to PCIe Configuration Space Address Translation for
Configuration TLPs

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_0010_0000

64’H0000_0000_0010_0FFF

AXI Address Map

BDF=16’h0, CFG REG NUM=12’h000

BDF=16’hFFFF, CFG REG NUM=12’hFFF

PCIe Configuration Space

Visible to Root Port

Region 1
Configuration TLP Region

4 Kbytes, 12 bits

Example 2

Figure 43: Outbound AXI to PCIe Configuration Space Address Translation for
Configuration TLPs

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_1000_0000

64’H0000_0000_1FFF_FFFF

AXI Address Map

BDF=16’h0, CFG REG NUM=12’h000

BDF=16’hFFFF, CFG REG NUM=12’hFFF

PCIe Configuration Space

Visible to Root Port

Region 1
Configuration TLP Region

256 Mbytes, 28 bits

The PCIe configuration write and I/O write requests have a payload size of one DWORD. The
AXI address should be aligned to the first data byte enable that is provided. The data/byte
enable starts from the first address location given. One DWORD of data starting from the above
address is used for the configuration and I/O write payload.

Memory or I/O TLP Access
For this example, assume that the one of the PCIe Controller's memory regions has an AXI
region base address of 64'h0000_0000_0010_0000 (region 1 as shown in the following figure)
with a region size of 1 Mbytes. Assume you want to write to the 64'h0000_0000_3000_0000
base address.

www.elitestek.com 86

TJ-Series PCIe Controller User Guide

When you program the Outbound PCIe Descriptor Register you assign a specific TLP type to
the region number. Follow the values to be programmed in the desc0, desc1, desc2, and
desc3 registers given in Outbound PCIe Descriptor Registers on page 47 Memory or I/O
TLPs column.

Figure 44: Outbound AXI to PCIe Address Translation Register Programming

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_0010_0000

64’H0000_0000_001F_FFFF

AXI Address Map PCIe Address Map

Translated PCIe Address Range
1 Mbytes, 20 bits

Region 1
Memory or I/O TLP Region

1 Mbytes, 20 bits

64’H0000_0000_0000_0000

64’H0000_0000_00FF_FFFF

64’H0000_0000_3000_0000

64’H0000_0000_300F_FFFF

Table 49: AXI Region Base Address Register and Outbound AXI to PCIe Address Translation Register
Values

Register Value Register Value

AXI_ADDR0[5:0] 6'd19 AXI_ADDR0[5:0] 6'd19

AXI_ADDR0[31:8] 24'h00_1000 AXI_ADDR0[31:8] 24'h30_0000

AXI_ADDR1[31:0] 32'h0000_0000 AXI_ADDR1[31:0] 32'h0000_0000

Message TLP Access
When an outbound message access is made to an AXI region, the PCIe header fields are driven
from the region register values. Only message code and message routing fields are driven
through the AXI address (MASTER_AXI_AWADDR).

This example uses region two as a message region. The messages region is decoded after
an access is made with an AXI address that falls between 64’h0000_0000_0020_0000 and
64'h0000_0000_002F_FFFF. The Outbound PCIe Descriptor Registers for region two must be
programmed with values for message TLPs.

Note: Messages should have a minimum region size of 128 Kbytes. A bit for the message code, message routing, and
message with/without data is driven through the AXI address (refer to Table 23: MSG_ROUTING and MSG_CODE Fields on
page 47).

For vendor-defined messages, the vendor defined message header bits [127:72] is driven
through the Outbound AXI to PCIe Address Translation Registers as explained in Table 21:
ob_addr1 Outbound AXI-to-PCIe Address Translation Registers on page 47.

Endpoint Autonomous Link Bandwidth Management
The PCIe Controller performs link bandwidth management by enabling the endpoint to change
the link speed autonomously (which is permitted by the PCIe specification). However, the
PCIe specification does not define the mechanism to initiate the autonomous change. In the
PCIe Controller, firmware can initiate the autonomous link speed change.

www.elitestek.com 87

TJ-Series PCIe Controller User Guide

Upon reset de-assertion, the link initially trains up to Gen4 speed if supported by both link
devices. Otherwise, the link initially trains up to Gen1 speed. The endpoint can autonomously
initiate a link speed change with the following process:

1. Check the current negotiated link speed by reading the Negotiated Link Speed field of the
Link Control and Status Configuration Register (bits [19:16]).

2. Check the host's upper link speed limit by reading the Target Link Speed field in the Link
Control 2 Configuration Register.

3. If the endpoint needs to change the link speed within the limit constrained by the host:

a. Program the required speed in the endpoint's Target Link Speed field of the Local
Management Register - Link Width Control Register (bits [25:24]) .

b. Trigger link retraining by writing a 1 to the endpoint's Link Speed Change Retrain Link
bit of the Local Management Register - Linkwidth Control Register.

c. Wait for the endpoint Link Speed Change Retrain Link bit to clear. The PCIe Controller
clears this bit when link retraining is complete.

4. To check if the speed change was successful, read the Negotiated Link Speed field of the
Link Control and Status Configuration Register (bits [19:16]).

The host can disable autonomous link speed changes on the endpoint by setting the Hardware
Autonomous Speed Disable bit in the Link Control and Status Register 2. If the host sets this bit,
any endpoint request to change the link speed will not be successful. The PCIe Controller enters
recovery but does not initiate a speed change.

The firmware should always wait for a link retraining request to complete before initiating another
retraining request.

After initiating a link retrain request, do not write to the Linkwidth Control Register utill the
retraining request is completed.

Programming the SR-IOV Registers
The following topics describe how the VF numbers are allocated and how to set up the VF
BARs.

VF Function Number Allocation
The VF numbers begin immediately after the PF numbers; there are no gaps in the function
number allocation between PFs and VFs. The VF stride is fixed at 0x1. Therefore, all VFs that
belong to the same PF are allocated successive function numbers.

Table 50: VF Function Number allocation

Routing ID Description

0 PF0

1 PF1

2 PF2

3 PF3

4 to 19 PF0_VF1 to PF0_VF16

20 to 35 PF1_VF1 to PF1_VF16

36 to 51 PF2_VF1 to PF2_VF16

52 to 67 PF3_VF1 to PF3_VF16

If you configure the PCIe Controller to have multiple PFs, you can change the total number of
VFs allocated to each PF by programming bits [15:0] in the Total VF Count Register in the PFs'
SR-IOV extended capabilities. When you modify the field, the VF function number allocation
changes and ensures that all VFs are allocated successive function numbers. Firmware should
re-program the First VF Offset field to reflect the new VF function number allocation as described
below.

www.elitestek.com 88

TJ-Series PCIe Controller User Guide

● PF0 First VF Offset[15:0] = Total Number of PFs
● PF1 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) - 1
● PF2 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) - 2
● PF3 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) - 3
● PF4 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) - 4
● PF5 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1

Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) + (PF4
Total VF Count[15:0]) - 5

● PF6 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1
Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) + (PF4
Total VF Count[15:0]) + (PF5 Total VF Count[15:0]) - 6

● PF7 First VF Offset[15:0] = Total Number of PFs + (PF0 Total VF Count[15:0]) + (PF1
Total VF Count[15:0]) + (PF2 Total VF Count[15:0]) + (PF3 Total VF Count[15:0]) + (PF4
Total VF Count[15:0]) + (PF5 Total VF Count[15:0]) + (PF6 Total VF Count[15:0]) – 7

Setting up the VF BAR Registers
The PCIe Controller provides the following registers in the local management space to allow
user control of the VF BAR registers:

● Virtual Function BAR Configuration Register 0
● Virtual Function BAR Configuration Register 1

You can setup the following BAR parameters with these registers:

● VF BAR size—32-bit or 64-bit BAR
● VF BAR type—Prefetchable or non-prefetchable
● VF BAR aperture

Download: You set up the VF BAR registers in the Interface Designer (PCI Express block > Function tab > Physical
Function n sub-tab where n is 0 - 3).
Efinix does not recommend changing these settings via the APB interface.

The VF BAR aperture is also affected by the System Page Size register in the SR-IOV extended
capability. Each VF BARn or VF BARn pair should be aligned on a system page size boundary.
Additionally, each VF BARn or VF BARn pair defining a non-zero address space should be sized
to consume an integer multiple of system page size bytes.

If the VF BAR aperture is not aligned to the system page size, the PCIe Controller internally
overrides the user settings to align the aperture to the system page size. For example:

● VF BAR aperture is not aligned to system page size—If the VF BAR 0 aperture is 4 KB
in Virtual Function BAR Configuration Register 0 and if the host-programmed System
Page Size Register is 4 MB in the SR-IOV extended capability, the PCIe Controller
internally requests 4 MB in the VF BAR0 register, aligned to the system page size.

● VF BAR Aperture is aligned to System Page Size—If the VF BAR 0 aperture is 8 KB in
Virtual Function BAR Configuration Register 0 and if the host-programmed System Page
Size Register is 4 KB in the SR-IOV extended capability, the PCIe Controller internally
requests 8 KB in the VF BAR0 register (as requested by the user).

Managing Outbound NP Outstanding Requests
and Completion Responses (Endpoint)

As per the PCIe specification, an endpoint must advertise infinite credits for completion packets.
Therefore, the endpoint must be ready to accept all completions it receives for all non-posted

www.elitestek.com 89

TJ-Series PCIe Controller User Guide

requests it initiates. The endpoint can receive responses for NP requests in multiple split
completion packets.

The PCIe Controller has two buffers to store the received completion packets:
● Stage 1 buffer—Completion FIFO RAM
● Stage 2 buffer—AXI re-ordering FIFO RAM

The stage 1 buffer performs posted vs. completion ordering checks. The PCIe Controller stores
completion packets in this FIFO until the posted vs. completion ordering checks are cleared. The
stage 2 buffer reorders the received split completion packets and merges them to form a single
completion response for each request. This process is needed because the AXI interface cannot
accept split completions.

Table 51: Outbound NP Request Parameters

Parameter Value

Maximum number of outstanding NP requests. 128

Maximum size of each NP request (MRRS). 4096B

Maximum number of split completion packets received per NP request assuming each NP
request is of MRRS, 64B RCB boundary and addresses are non-64B aligned.

65

Maximum number of split completion packets that can be received. 8320

Maximum number of split completion packets that can be stored in the stage 1 buffer. 256

Although the stage 2 buffer can store the full size of the completion data, the stage 1 buffer is
smaller and the maximum possible Completion data exceeds the stage 1 buffer storage capacity.
The stage 1 buffer is temporary storage for completion packets and can only store a limited
number of them. The stage 1 buffer is is not designed to store the maximum possible completion
data. Therefore, the posted data must not block the completion data. The client must drain the
posted data at PCIe link rate; otherwise, a completion FIFO RAM overflow can occur.

The following sections describe how the client can prevent completion FIFO overflows.

Drain Received Inbound Completion Packets at PCIe Link Rate
With this method, the client guarantees that the write data received on the PCIe Controller's AXI
interface is drained at the PCIe link rate. This method ensures that the posted packets do not
block the completion packets, which avoids a completion FIFO overflow.

Disable Independent Posted vs. Completion Ordering Checks
You can only use this option if the received inbound completion and posted data streams are
completely independent. In this case, the client programs the local management register Disable
Ordering Checks bit [30] in the i_debug_mux_control_reg register. This setting disables posted
vs. completion ordering checks and decouples the two inbound data streams, and the posted
packets no longer block the completion packets, which avoids a completion FIFO overflow.

Limit Outstanding NP Read Requests to Ensure FIFO Never Overflows
The client limits the total number of outstanding NP requests thereby ensuring that the
completion FIFO does not overflow. Limit the number by setting the Maximum NP Outstanding
Request Limit[7:0] field in the local management Debug Mux Control 2 Register. Program it
based on maximum size of the NP requests and NP request address alignment as shown in the
following table.

Table 52: Controlling Maximum NP Outstanding Requests

Maximum NP Request Size (MRRS) All NP 64B Rquest Addresses Aligned? Programmed Value in Maximum NP
Outstanding Request Limit Register

64 B Yes 128

64 B No 128

128 B Yes 128

128 B No 85

www.elitestek.com 90

TJ-Series PCIe Controller User Guide

Maximum NP Request Size (MRRS) All NP 64B Rquest Addresses Aligned? Programmed Value in Maximum NP
Outstanding Request Limit Register

256 B Yes 64

256 B No 51

512 B Yes 32

512 B No 28

1024 B Yes 16

1024 B No 15

2048 B Yes 8

2048 B No 7

4096 B Yes 4

4096 B No 3

www.elitestek.com 91

TJ-Series PCIe Controller User Guide

Interface Signals
The following topics describe the PCIe Controller signal interface. Refer to Figure 2: PCIe
Controller Block Diagram on page 5 for the block diagram.

Clock Signals
Table 53: Clock Ports

Signal Direction Width Description

AXI_CLK Input 1 AXI interface clock.

PM_CLK Output 1 Free-running clock used for low power state transitions and clock
control generation.

USER_APB_CLK Input 1 APB interface clock.

Reset Interface Signals
Table 54: Reset Interface

Signal Direction Width Clock
Domain

Description

HOT_RESET_IN Input 1 AXI_CLK When this input is asserted in root port mode, the
PCIe Controller initiates a hot reset sequence on the PCIe
link. The PCIe Controller keeps the PCIe link in hot reset
as long as this signal remains asserted.
When de-asserted, the PCIe Controller brings the PCIe
link out of hot reset and initiates link training.

HOT_RESET_OUT Output 1 AXI_CLK The PCIe Controller asserts this output when a hot reset is
received from the link in endpoint mode. This signal is an
active-high output driven synchronous to AXI_CLK.

LINK_DOWN_RESET_OUT Output 1 AXI_CLK The PCIe Controller asserts this output when the LTSSM
detects a link-down event (i.e., when the LINK_UP state
variable goes to 0). This signal is an active-high output
driven synchronous to AXI_CLK. It is asserted high for
eight AXI_CLK clock cycles during a link down event.

PERST_N Input 1 Async Triggers a warm reset from the I/O pad.

RESET_REQ Output 1 Async When this signal is asserted, the PCIe Controller requests
to trigger a warm or hot reset. Refer to Reset Handshake.

RESET_ACK Input 1 Async Assert this signal to indicate readiness and permission for
a warm or hot reset. Refer to Reset Handshake.

AXI Master Interface Signals
Table 55: AXI Master Write Address Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_AWREADY Input 1 AXI_CLK Ready signals from the client to the PCIe Controller indicating that
the application is ready to sample the address and associated
parameters from the target write interface. The address and
associated parameters are transferred across the interface when
TARGET_AXI_AWVALID and TARGET_AXI_AWREADY are both
high in a clock cycle.

www.elitestek.com 92

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

TARGET_AXI_AWADDR Output 64 AXI_CLK The PCIe Controller places the address of the first byte in a burst
when initiating a write transaction on the target write interface. The
address is valid when TARGET_AXI_AWVALID is asserted. The
AXI address is the starting byte-level address of the memory block
or I/O location to be read or written. When the transaction is a 32-
bit read/write, bits [63:32] are set to zeroes.

TARGET_AXI_AWID Output 8 AXI_CLK This output contains an 8-bit tag to identify the write transaction.
This output is valid when TARGET_AXI_AWVALID is asserted.

TARGET_AXI_AWLEN Output 8 AXI_CLK Indicates the number of beats (data transfer cycles) associated
with the current burst (0000 = 1 beat, 0001 = 2 beats, ..., 1111 =
16 beats). This information is valid when TARGET_AXI_AWVALID
is asserted. The valid bytes within each beat are identified by the
write strobe signal TARGET_AXI_WSTRB[7:0].

TARGET_AXI_AWSIZE Output 3 AXI_CLK Indicates the size of the AXI transfer.

Sideband status information for inbound AXI write transfer.
[2:0] Transaction type:
010: Memory write
011: I/O write
All other values are reserved.

[5:3] PCIe attributes associated with the request.

[21:6]: PCI Requester ID associated with the request. With the
legacy interpretation of RIDs, these 16 bits are divided into:

● [31:24] an 8-bit bus number
● [23:19] 5-bit device number
● [18:16] 3-bit function number

When ARI is enabled, bits [31:24] carry the 8-bit bus number and
[23:16] provide the function number.

[29:22] Request's PCI tag.

[32:30] Request's PCIe transaction class (TC).

[35:33] For memory and I/O requests, these bits identify the
matching BAR for the memory or I/O address.
For 64-bit transactions, the BAR number is given as the lower
address of the matching pair of BARs (i.e., 0, 2 or 4).(10)

000: BAR 0
001: BAR 1
010: BAR 2
011: BAR 3
100: BAR 4
101: BAR 5
110: Expansion ROM access.
For message requests, these bits provide the 3-bit Routing field
r[2:0] from the message header.

[43:36] Request's target function determined by the BAR check.
When ARI is in use, all 8 bits of this field are valid. Otherwise, only
bits [50:48] are valid. This field is valid only for memory and I/O
requests and is set to 0 for message requests.(11)

[51:44] For message requests, these bits provide the message
code from the message TLP header. These bits are reserved for
all other request types.

[59:52] 8-bit steering tag for the hint.

[61:60] Value of PH[1:0] associated with the hint.

TARGET_AXI_AWUSER Out 88 AXI_CLK

[62] Set when the request has a transaction processing hint
associated with it.

(10) This description is also applicable for root ports. If RC BAR check is enabled, 000 = RC BAR0 and 001 = RC BAR2 for the two RC 64-bit BARs.
(11) This signal is applicable to endpoints only. For root ports, these bits are 0.

www.elitestek.com 93

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

[64:63] PCIe AT bits:
00: Untranslated
01: Translation request
10: Translated
11: Reserved

[65] PASID present.

[85:66] PASID value, 20 bits maximum. The size depends on the
Max PASID Width field in the PASID Capability Register.

[86] Privilege mode access.

[87] Execute mode access.

TARGET_AXI_AWVALID Output 1 AXI_CLK Valid signal for the address and control information on the AXI
slave write interface. The PCIe Controller keeps this valid signal
asserted until the client sets the ready input to the PCIe Controller
(TARGET_AXI_AWREADY) in response.

Table 56: AXI Master Write Data Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_WREADY Input 1 AXI_CLK Ready for write data from the client to the PCIe Controller.
The client must assert this signal when it is ready to
receive the next beat from the PCIe Controller.

TARGET_AXI_WDATA Output 256 AXI_CLK Data associated with a memory write operation delivered
from the PCIe Controller. Data is transferred in little-endian
order. For writes, data is transferred aligned. The data on
this bus is valid when TARGET_AXI_WVALID is high.

TARGET_AXI_WDATA_PAR Output 32 AXI_CLK Contains the end-to-end parity for TARGET_AXI_WDATA.
Odd parity is computed for every byte of the data and
propagated through the PCIe Controller for end-to-end
parity protection.

TARGET_AXI_WLAST Output 1 AXI_CLK Asserted in the last beat of the burst to indicate the end of
the write transaction.

TARGET_AXI_WSTRB Output 32 AXI_CLK Indicates valid bytes in the first and last beat of the data
block being transferred. Data is transferred aligned.
Indicates valid bytes of the data block being transferred.
The AXI interface supports noncontiguous byte enables
on any data block. The AXI logic splits the write packets
based on the write strobes, followimg the PCIe first/last
byte enable as described in the specification.

TARGET_AXI_WSTRB_PAR Output 4 AXI_CLK Contains the end-to-end parity for TARGET_AXI_WSTRB.

TARGET_AXI_WVALID Output 1 AXI_CLK The PCIe Controller maintains data on the bus until the
client has asserted TARGET_AXI_WREADY.

Table 57: AXI Master Write Response Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_BID Input 8 AXI_CLK This output contains an 8-bit tag to identify the response
phase of a write transaction. This output is valid when
TARGET_AXI_BVALID is asserted.

TARGET_AXI_BID_PAR Input 1 AXI_CLK Contains the end-to-end parity for TARGET_AXI_BID.

TARGET_AXI_BRESP Input 2 AXI_CLK Indicates the response to the transaction when
TARGET_AXI_BVALID is asserted.

TARGET_AXI_BRESP_PAR Input 1 AXI_CLK Contains the end-to-end parity for TARGET_AXI_BRESP.

TARGET_AXI_BVALID Input 1 AXI_CLK Valid for write response from client to PCIe Controller.

www.elitestek.com 94

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

TARGET_AXI_BREADY Output 1 AXI_CLK Ready for write response from PCIe Controller to client.
Client should hold the response signals and valid until this
signal is asserted.

Table 58: AXI Master Read Address Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_ARREADY Input 1 AXI_CLK Ready signals from the client to the PCIe Controller
indicating that the application is ready to sample
the address and associated parameters from
the target read interface. The address and
associated parameters are transferred across
the interface when TARGET_AXI_ARVALID and
TARGET_AXI_READ_ARREADY are both high in a clock
cycle.

TARGET_AXI_ARADDR Output 64 AXI_CLK Address of the first byte in the read request. The address
is valid when TARGET_AXI_ARVALID is asserted. The
AXI address is the starting byte-level address of the
memory block or I/O location to be read or written. When
the transaction is a 32-bit read/write, bits [63:32] are set to
zeroes.

TARGET_AXI_ARID Output 8 AXI_CLK Read ID tag associated with the target memory read
transaction. The client must store this tag and return it on
TARGET_AXI_RID while transferring the data associated
with the read request.
This output is valid when TARGET_AXI_ARVALID is
asserted.

TARGET_AXI_ARLEN Output 8 AXI_CLK Indicates the number of beats (data transfer cycles)
associated with the read burst.

TARGET_AXI_ARSIZE Output 3 AXI_CLK Indicates size of the AXI transfer.

Sideband status information for inbound AXI read transfer.
For 64-bit transactions, the BAR number is given as the
lower address of the matching pair of BARs (that is, 0, 2 or
4).
[2:0] Transaction type:
000: memory read
001: I/O read
All other values are reserved.

[5:3] Request's PCIe attributes associated.

[21:6] PCI Requester ID associated with the request. With
the legacy interpretation of RIDs, these 16 bits are divided
into:

● [21:14] 8-bit bus number
● [13:9] 5-bit device number
● [8:6] 3-bit function number

When ARI is enabled, bits [21:14] carry the 8-bit bus
number and bits [13:6] provide the function number.

[29:22] PCI Tag associated with the request.

TARGET_AXI_ARUSER Output 88 AXI_CLK

[32:30] Request's PCIe transaction class (TC).

www.elitestek.com 95

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

[35:33] For memory and I/O requests, these bits identify
the matching BAR for the memory or I/O address.(12)

000: BAR 0
001: BAR 1
010: BAR 2
011: BAR 3
100: BAR 4
101: BAR 5
110: Expansion ROM access

[43:36] Request's target function number as determined by
the BAR check. When ARI is in use, all 8 bits of this field
are valid. Otherwise, only bits [50:48] are valid. This field is
valid only for memory and I/O requests, and is set to 0 for
message requests.(13)

[51:42] These bits are reserved for all read request types.

[59:52] 8-bit steering tag for the hint.

[61:60] Value of PH[1:0] associated with the hint.

[62] Set when the request has a transaction processing
hint associated with it.

[64:63] PCIe AT bits:
00: Untranslated
01: Translation request
10: Translated
11: Reserved

[65] PASID present.

[85:66] PASID value, 20 bits maximum. The size depends
on the Max PASID Width field in the PASID Capability
Register.

[86] Privilege mode access.

[87] Execute mode access.

TARGET_AXI_ARVALID Output 1 AXI_CLK Valid signal for the address and control information
on the AXI slave read interface. The PCIe Controller
keeps this valid signal asserted until the client
application sets the ready input to the PCIe Controller
TARGET_AXI_ARREADY in response.

Table 59: AXI Master Read Data Channel

Signal Direction Width Clock
Domain

Description

TARGET_AXI_RDATA Input 256 AXI_CLK Data associated with a memory read operation delivered
by the client to the PCIe Controller. Data is transferred in
little-endian order.
For memory reads, data is transferred in aligned fashion.
The data on this bus is valid when TARGET_AXI_RVALID
is high.

TARGET_AXI_RDATA_PAR Input 32 AXI_CLK Contains the end-to-end parity for TARGET_AXI_RDATA.

TARGET_AXI_RID Input 6 AXI_CLK When transferring data in response to a read request,
the client must place the 6-bit read ID tag associated
with the request on this bus. This tag must be valid when
TARGET_AXI_READ_RVALID is high.

TARGET_AXI_RID_PAR Input 1 AXI_CLK Contains the end-to-end parity for TARGET_AXI_RID.

(12) This description is also applicable to root ports. The BAR check is enabled, 000 = root port BAR0, 001 = root port BAR2 for the 2 root port 64-bit
BARs.

(13) This signal is applicable to endpoints only. For root ports, these bits are 0.

www.elitestek.com 96

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

TARGET_AXI_RLAST Input 1 AXI_CLK The client must assert this signal in the last beat of the
burst to indicate the end of the read burst.

TARGET_AXI_RRESP Input 2 AXI_CLK Read status from client. Allowed status encoding are:
00: Good completion
10: Slave error
Others: Not supported
The PCIe Controller responds to the slave error by
sending a completion on the link with the completer abort
status, instead of a normal completion.
The read response status must be valid when
TARGET_AXI_RVALID is high.

TARGET_AXI_RRESP_PAR Input 1 AXI_CLK Contains the end-to-end parity for TARGET_AXI_RRESP.

TARGET_AXI_RVALID Input 1 AXI_CLK Indicates valid data on the TARGET_AXI_RDATA
bus. The client must maintain data on the bus until the
PCIe Controller has asserted TARGET_AXI_RREADY.

TARGET_AXI_RREADY Output 1 AXI_CLK Ready for read data from the PCIe Controller to the client.
The PCIe Controller asserts this signal when it is ready to
receive the next beat from the client.

Table 60: AXI Master Sideband Signals

Signal Direction Width Clock
Domain

Description

TARGET_NON_POSTED_REJ Input 1 AXI_CLK Asserted by client when it cannot service a non-posted
request. The PCIe Controller does not present any
non-posted requests that it receives from the PCIe link.
Instead, it will holds them in the PNP FIFO RAM until the
signal is de-asserted.
If a non-posted TLP has already been queued from the
PNP FIFO and this signal is asserted, the PCIe Controller
places it on the AXI bridge. The client must accept the
non-posted TLP. The in-flight non-posted TLPs in the
PCIe Controller from the PNP FIFO cannot be stopped.
However, non-posted TLPs that are in the PNP FIFO RAM
when this signal is asserted or that come in after the signal
is asserted are not forwarded to the AXI interface.
The client must assert this signal when it still can process
two or three non-posted TLPs. This requirement allows
posted TLPs to go past non-posted TLPs at the AXI
master write interface due to client not being able to
service non-posted TLPs.

AXI Slave Interface Signals
Table 61: AXI Slave Interface Write Address Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_AWADDR Input 64 AXI_CLK Address for the master-side write transaction from the client. The
address is valid when MASTER_AXI_AWVALID is asserted. The
AXI address is the starting byte-level address of the memory block,
config or I/O location to be read or written. When the transaction is
a 32-bit read/write, bits [63:32] must be set to zeroes.

MASTER_AXI_AWID Input 8 AXI_CLK The client must place a 8-bit identifier for the write transaction on
this input. This tag is used to match the write completion status
returned by the PCIe Controller with the associated request. This
input must be valid when MASTER_AXI_AWVALID is asserted.

www.elitestek.com 97

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

MASTER_AXI_AWLEN Input 8 AXI_CLK Indicates the number of beats (data transfer cycles)
associated with the current burst. This information is valid
when MASTER_AXI_AWVALID is asserted. The valid bytes
within each beat are identified by the write strobe signal
MASTER_AXI_WSTRB.

MASTER_AXI_AWSIZE Input 3 AXI_CLK Burst size. This signal indicates the size of each transfer in the
burst. Byte lane strobes indicate exactly which byte lanes to
update.

MASTER_AXI_AWUSER Input 88 AXI_CLK Sideband descriptor. Refer to AXI Outbound Access through
Sideband Descriptor for detailed description.

MASTER_AXI_AWVALID Input 1 AXI_CLK Valid signal for the address and other parameters associated with
the request on the AXI master write interface. The client must keep
this valid signal asserted until the PCIe Controller sets the ready
output (MASTER_AXI_AWREADY) in response.

MASTER_AXI_AWREADY Output 1 AXI_CLK Ready signal from the PCIe Controller to the client, indicating that
the PCIe Controller is ready to sample the address and associated
parameters from the master write interface. The address and
associated parameters are transferred across the interface when
MASTER_AXI_AWVALID and MASTER_AXI_AWREADY are both
high in a clock cycle.

Table 62: AXI Slave Interface Write Data Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_WDATA Input 256 AXI_CLK Data associated with a memory write operation delivered from the
client to the PCIe Controller. Data is transferred in little-endian
order.
For memory writes, data is transferred in aligned fashion. The data
on this bus is valid when MASTER_AXI_WVALID is high.

MASTER_AXI_WDATA_PAR Input 32 AXI_CLK Contains the end-to-end parity for MASTER_AXI_WDATA.

MASTER_AXI_WLAST Input 1 AXI_CLK Asserted in the last beat of the burst to indicate the end of the write
transaction.

MASTER_AXI_WSTRB Input 32 AXI_CLK Indicates valid bytes in the first and last beat of the data block
being transferred. Data is transferred in aligned fashion.
For write transactions with a payload size of 8 bytes or less, the
byte strobes may be non-contiguous, as described in the PCIe
specification.

MASTER_AXI_WSTRB_PAR Input 4 AXI_CLK Indicates valid bytes in the first and last beat of the data
block being transferred. Data is transferred aligned. For write
transactions with a payload size of 8 bytes or less, the byte strobes
may be non-contiguous, as described in the PCIe Specifications.

MASTER_AXI_WVALID Input 1 AXI_CLK Indicates valid data on the MASTER_AXI_WDATA bus. The
client must maintain data on the bus until the PCIe Controller has
asserted MASTER_AXI_WREADY in return.

MASTER_AXI_WREADY Output 1 AXI_CLK Ready for write data from the PCIe Controller to the client. The
core asserts this signal when it is ready to receive the next beat
from the client.

Table 63: AXI Slave Interface Write Response Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_BREADY Input 1 AXI_CLK Ready for write response from the PCIe Controller to the client.
The client asserts this signal when it is ready to accept the next
write response from the client

MASTER_AXI_BID Output 8 AXI_CLK For each write transaction received on the AXI master write
interface, the PCIe Controller returns the completion status of the
transaction by placing the 8-bit identifier of this transaction and
asserting MASTER_AXI_BVALID.

www.elitestek.com 98

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

MASTER_AXI_BID_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_BID. Odd parity
is computed for every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

MASTER_AXI_BRESP Output 2 AXI_CLK Write completion status from client. Valid status encoding are:
2'b00: Good completion
2'b10: Slave error, Completion error for Non-Posted Writes
2'b11: Decode error

MASTER_AXI_BRESP_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_BRESP. Odd
parity is computed for every byte of the data and propagated
through the PCIe Controller for end-to-end parity protection.

MASTER_AXI_BUSER Output 5 AXI_CLK [2:0] Completion error code.
[4:3] Completion status code.
Other fields are reserved.
See Appendix B: Error Handling on page 112.

MASTER_AXI_BUSER_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_BUSER. Odd
parity is computed for every byte of the data and propagated
through the PCIe Controller for end-to-end parity protection.

MASTER_AXI_BVALID Output 1 AXI_CLK The PCIe Controller asserts this output when it has placed
the completion status of a master write transaction on
MASTER_WRITE_COMPLETION_STATUS. It keeps the output
asserted until the client has asserted MASTER_AXI_BREADY.

Table 64: AXI Slave Interface Read Address Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_ARADDR Input 64 AXI_CLK Address for the client's master-side read transaction. The client
must places the address of the first byte of the burst on this bus
when initiating a read transaction on the master read interface.
The address is valid when MASTER_AXI_ARVALID is asserted.

MASTER_AXI_ARID Input 8 AXI_CLK Read ID tag associated with the master memory read transaction.
This tag is used to match the read completion status returned by
the PCIe Controller with the associated request.
This output must be valid when MASTER_AXI_ARVALID is
asserted.

MASTER_AXI_ARLEN Input 8 AXI_CLK Indicates the number of beats (data transfer cycles)
associated with the read burst. This information is valid when
MASTER_AXI_ARVALID is asserted.

MASTER_AXI_ARSIZE Input 3 AXI_CLK Burst size. This signal indicates the size of each transfer in the
burst. All bytes in the current transfer size are read.

MASTER_AXI_ARUSER Input 88 AXI_CLK Sideband descriptor. AXI Outbound Access through Sideband
Descriptor” for detailed description.

MASTER_AXI_ARVALID Input 1 AXI_CLK Valid signal for the address and associated parameters on
the AXI master read interface. The client must keep this valid
signal asserted until the PCIe Controller sets the ready input
(MASTER_AXI_ARREADY).

MASTER_AXI_ARREADY Output 1 AXI_CLK Ready signal from the PCIe Controller to the client, indicating that
the PCIe Controller is ready to sample the address and associated
parameters from the master read interface. The address and
associated parameters are transferred across the interface when
MASTER_AXI_ARVALID and MASTER_AXI_ARREADY are both
high in a clock cycle.

www.elitestek.com 99

TJ-Series PCIe Controller User Guide

Table 65: AXI Slave Interface Read Data Channel

Signal Direction Width Clock
Domain

Description

MASTER_AXI_RREADY Input 1 AXI_CLK Ready for read response status from the client. The client must
assert this signal when it ready to accept the read response
status from the PCIe Controller. PCIe Controller core keeps
MASTER_AXI_RVALID asserted until it samples this ready signal
high on a positive edge of the clock.

MASTER_AXI_RDATA Output 256 AXI_CLK Data associated with a memory read operation delivered by the
PCIe Controller to the client. Data is transferred in little-endian
order. Data is transferred in aligned fashion. The data on this bus
is valid when MASTER_AXI_RVALID is high.

MASTER_AXI_RDATA_PAR Output 32 AXI_CLK Contains the end-to-end parity for MASTER_AXI_RDATA. Odd
parity is computed for every byte of the data and propagated
through the PCIe Controller for end-to-end parity protection.

MASTER_AXI_RID Output 8 AXI_CLK The PCIe Controller places the 4-bit read ID tag associated
with the read request when returning data/completion
status to the client. The ID on this bus is valid when
MASTER_READ_REPONSE_VALID is high.

MASTER_AXI_RID_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_RID. Odd parity
is computed for every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

MASTER_AXI_RLAST Output 1 AXI_CLK The PCIe Controller asserts this signal in the last beat of the burst
to indicate the end of the read burst.

MASTER_AXI_RRESP Output 2 AXI_CLK Read completion status from client. Valid status encoding are:
2'b00: Good completion
2'b10: Slave error, completion error
2'b11: Decode error

MASTER_AXI_RRESP_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_RRESP.. Odd
parity is computed for every byte of the data and propagated
through the PCIe Controller for end-to-end parity protection.

MASTER_AXI_RUSER Output 7 AXI_CLK [2:0] Completion error code.
[4:3] Completion status code.
[5] If 1, uncorrectable error in the AXI reorder RAM or completion
RAM.
[6] If 1, AXI slave read/write addresses may not match any of the
AXI base address programmed in the outbound region.
See Appendix B: Error Handling on page 112.

MASTER_AXI_RUSER_PAR Output 1 AXI_CLK Contains the end-to-end parity for MASTER_AXI_RUSER. Odd
parity is computed for every byte of the data and propagated
through the PCIe Controller for end-to-end parity protection.

MASTER_AXI_RVALID Output 1 AXI_CLK Valid for read response status from the PCIe Controller to
the client. The assertion of this signal indicates that the
PCIe Controller is ready to transfer data in response to a read
request it received from the client.

Interrupt Interface Signals
Table 66: Interrupt interface

Signal Direction Width Clock
Domain

Description

LOCAL_INTERRUPT Output 1 AXI_CLK Active-high local error and status register interrupt. Asserted
until software clears the Local Error and Status Register.

INTERRUPT_SIDEBAND_
SIGNALS

Output 28 AXI_CLK Signal that causes local interrupt as sideband. See Interrupt
Sideband Signals.

www.elitestek.com 100

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

INTA_IN Input 1 When the PCIe Controller is configured as an endpoint, the
client uses this input to signal an interrupt from any of its
PCI functions to the root port using legacy PCIs interrupts.
This input corresponds to the PCI bus INTA. Asserting this
signal causes the PCIe Controller to send an Assert_INTx
message; de-asserting it causes the PCIe Controller to
transmit a Deassert_INTx message.

INTB_IN Input 1 AXI_CLK When the PCIe Controller is configured as an endpoint, the
client uses this input to signal an interrupt from any of its
PCI functions to the root port using Legacy PCI Express
Interrupt Delivery. This input corresponds to the PCI bus
INTB. Asserting this signal causes the PCIe Controller to
send an Assert_INTx message; de-asserting it causes the
PCIe Controller to transmit a Deassert_INTx message.

INTC_IN Input 1 AXI_CLK When the PCIe Controller is configured as an endpoint, the
client uses this inputs to signal an interrupt from any of its
PCI functions to the root port using Legacy PCI Express
Interrupt Delivery. This input corresponds to Ithe PCI bus
INT. Asserting this signal causes the PCIe Controller to
send an Assert_INTx message; de-asserting it causes the
PCIe Controller to transmit a Deassert_INTx message.

INTD_IN Input 1 AXI_CLK When the PCIe Controller is configured as an endpoint, the
client uses this inputs to signal an interrupt from any of its
PCI functions to the root port using Legacy PCI Express
Interrupt Delivery. This input corresponds to the PCI bus
INTD. Asserting this signals causes the PCIe Controller to
send an Assert_INTx message; de-asserting it causes the
PCIe Controller to transmit a Deassert_INTx message.

INT_PENDING_STATUS Input 4 AXI_CLK When using legacy interrupts, this input indicates the PF
interrupt pending status. The i input must be set when an
interrupt is pending in function i.

MSI_PENDING_STATUS_IN Input 128 AXI_CLK These inputs provide the status of the MSI pending
interrupts for the PFs from the client to the PCIe Controller. If
the MSI Pending Status In Mode Select field is set to 1 in the
Debug Mux Control 2 Register in local management space,
these pin settings determine the value read from the MSI
Pending Bits Register of the corresponding PF. Bits [31:0]
belong to PF0 , bits [63:32] to PF1, and so on.

INT_ACK Output 1 AXI_CLK A pulse on this output indicates that the PCIe Controller
has sent an Assert_INTx or Deassert_INTx message in
response to a change in the state of one of the INTx inputs.

INTA_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root port,
this output emulates the PCI legacy interrupt INTA. The
PCIe Controller asserts an interrupt output when it has
received an Assert_INTx message from the link, and
deasserts it when it receives a Deassert_INTx message.

INTB_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root port,
this output emulates the PCI legacy interrupt INTB. The
PCIe Controller asserts an interrupt output when it has
received an Assert_INTx message from the link, and
deasserts it when it receives a Deassert_INTx message.

INTC_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root port,
this output emulates the PCI legacy interrupt INTC. The
PCIe Controller asserts an interrupt output when it has
received an Assert_INTx message from the link, and
deasserts it when it receives a Deassert_INTx message.

INTD_OUT Output 1 AXI_CLK When the PCIe Controller is configured as a root port,
this output emulates the PCI legacy interrupt INTD. The
PCIe Controller asserts an interrupt output when it has
received an Assert_INTx message from the link, and
deasserts it when it receives a Deassert_INTx message.

www.elitestek.com 101

TJ-Series PCIe Controller User Guide

Message Interface Signals
Table 67: Message interface

Signal Name Direction Width Clock
Domain

Descriptions

MSG Output 256 AXI_CLK Inbound message interface data bus.

MSG_BYTE_EN Output 32 AXI_CLK Indicates which bytes of MSG are valid.

MSG_DATA Output 1 AXI_CLK Indicates that MSG contains message data.

MSG_END Output 1 AXI_CLK Indicates that MSG contains the last stripe of a message.

MSG_PASID Output 22 AXI_CLK PASID value.

MSG_PASID_PRESENT Output 1 AXI_CLK When asserted with MSG_START, indicates the presence
of PASID.

MSG_START Output 1 AXI_CLK Indicates that MSG contains the start of a message i.e., a
message header.

MSG_VALID Output 1 AXI_CLK Indicates that MSG_<name> signals are valid.

MSG_VDH Output 1 AXI_CLK Indicates that MSG contains a vendor-defined message
header.

Status and Error Indicator Signals
Table 68: Status and Error Indicator

Signal Name Direction Width Clock Domain Descriptions

LTSSM_STATE Output 6 AXI_CLK LTSSM state.

REG_ACCESS_CLK_SHUTOFF Output 1 USER_APB_CLK Pulse indicating an APB access when the
internal core clock was not running.

CORE_CLK_SHUTOFF Output 1 USER_APB_CLK Level signal indicating that the core clock is not
running.

LINK_STATUS Output 2 AXI_CLK Status of the PCIe link.
00: No receivers detected.
01: Link training in progress.
10: Link up, DL initialization in progress.
11: Link up, DL initialization completed.

FUNCTION_STATUS Output 16 AXI_CLK These outputs indicate the states of each
function's command register bits in the PCI
configuration space. Used to enable requests
and completions from the host.
[0] Function 0 I/O space enable
[1] Function 0 memory space enable
[2] Function 0 bus master enable
[3] Function 0 INTx disable
[4] Function 1 I/O space enable
[5] Function 1 memory space enable
[6] Function 1 bus master enable
[7] Function 1 INTx disable
and so on.

www.elitestek.com 102

TJ-Series PCIe Controller User Guide

Signal Name Direction Width Clock Domain Descriptions

PCIE_MAX_READ_REQ_SIZE Output 3 AXI_CLK The maximum request size field programmed in
the PCI Express Device Control Register. When
using multiple functions, this output provides the
minimum of the maximum read-request field in
the PFs' Device Control Registers. The client
must limit the size of outgoing read requests
to this value. The 3-bit codes are the same as
those defined in the PCIe specifications:
000: 128 bytes
001: 256 bytes
010: 512 bytes
011: 1,024 bytes
100: 2,048 bytes
101: 4,096 bytes

PCIE_MAX_PAYLOAD_SIZE Output 3 AXI_CLK The maximum payload size field programmed in
the PCI Express Device Control Register. When
using multiple fuctions, this output provides
the minimum of the maximum payload-size
field in the PFs' Device Control Registers.
The client must limit the size of outputgoing
completion payloads to this value. The 3-bit
codes are the same as those defined in the PCIe
specifications:
000: 128 bytes
001: 256 bytes
010: 512 bytes
011: 1024 bytes
100: 2048 bytes
101: 4096 bytes

ATS_PR_CONTROL_REG_
RESET

Output 4 AXI_CLK Reset per PF. When the enable field is clear (or
is being cleared during the same register update
that sets this field) writing a 1b to this field clears
the associated implementation dependent page
request credit counter and pending request state
for the associated page request interface. If this
field is written with 0b or if it is written with any
value while the enable field is set, no action is
taken. Reads of this field return 0b.

ATS_PR_CONTROL_REG_
ENABLE

Output 4 AXI_CLK Indicates that the page request interface can
to make page requests. If this field is clear, the
page request interface is not allowed to issue
page requests. If this field and the stopped
field are both clear, the page request interface
does not issue new page requests. Instead, it
has outstanding page requests that have been
transmitted or are queued for transmission.
When the page request interface is transitioned
from not-enabled to enabled, its status flags
(stopped, response failure, and unexpected
response flags) are cleared. Enabling a page
request interface that has not successfully
stopped has indeterminate results.
Default value is 0b.

Q0_PMA_CMN_READY Output 1 Async Common ready.

Q0_PIPE_P00_RATE Output 2 Static PIPE link signaling rate. Selects the data rate.
2'b00: PCIe Gen1
2'b01: PCIe Gen2
2'b10: PCIe Gen3
2'b11: PCIe Gen4

www.elitestek.com 103

TJ-Series PCIe Controller User Guide

Signal Name Direction Width Clock Domain Descriptions

CORRECTABLE_ERROR_IN Input 1 AXI_CLK The client can activate this input for one clock
cycle to indicate that the client detected a
correctable error that needs to be reported as
an internal error through using PCIe advanced
error reporting. In response, the PCIe Controller
sets the Corrected Internal Error Status bit in
the enabled function(s)' AER Correctable Error
Status Register. In endpoint mode it also sends
an error message if enabled to do so. This error
is not function specific.

UNCORRECTABLE_ERROR_IN Input 1 AXI_CLK The client can activate this input for one clock
cycle to indicate that the client detected an
uncorrectable error that needs to be reported as
an internal error through using PCIe advanced
error reporting. In response, the PCIe Controller
sets the Uncorrected Internal Error Status bit in
the enabled function(s)' AER Correctable Error
Status Register. In endpoint mode it also sends
an error message if enabled to do so. This error
is not function specific.

FATAL_ERROR_OUT Output 1 AXI_CLK This output is a single clock cycle for endpoints.
Endpoints: The PCIe Controller activates this
output for one clock cycle when it detects a fatal
error and its reporting is not masked. When
using multiple functions, it is the logical OR
of the fatal error status bits in the function(s)'
Device Status Registers.

NON_FATAL_ERROR_OUT Output 1 AXI_CLK This output is a single clock cycle for endpoints.
Endpoints: The PCIe Controller activates this
output for one clock cycle when it detects a non-
fatal error and its reporting is not masked. When
using multiple functions, it is the logical OR of
the non-fatal error status bits in the function(s)'
Device Status Registers.

CORRECTABLE_ERROR_OUT Output 1 AXI_CLK This output is a single clock cycle for endpoints.
Endpoints: The PCIe Controller activates this
output for one cycle when it detects a correctable
error and its reporting is not masked. When
using multiple functions, it is the logical OR of
the correctable error status bits in the function(s)'
Device Status Registers.

PHY_INTERRUPT_OUT Output 1 AXI_CLK Active-high, level-interrupt output. The
PCIe Controller asserts this output in the root
port mode to signal a link training-related event:
Local change: The link bandwidth changed
because the link width or operating speed
changed, and the change was initiated locally
(not by the link partner) without the link going
down. This interrupt is enabled by the Link
Bandwidth Management Interrupt Enable bit
in the Link Control Register. You can read the
this interrupt's status in the Link Bandwidth
Management Status bit of the Link Status
Register.
Automomous change: The link bandwidth
changed autonomously because the link width
or operating speed changed and the change
was initiated by the remote node. This interrupt
is enabled by the Link Autonomous Bandwidth
Interrupt Enable bit in the Link Control Register.
You can read this interrupt's status from the Link
Autonomous Bandwidth Status bit of the Link
Status Register.
This signal is not active when the
PCIe Controller is configured as an endpoint.

www.elitestek.com 104

TJ-Series PCIe Controller User Guide

Function-Level Reset Signals
These signals are only used in endpoint mode. Refer to Function-Level Reset (FLR) on page
64 for a more comprehensive overview of handshake.

Table 69: Function Level Reset

Signal Name Direction Width Clock
Domain

Descriptions

FLR_IN_PROGRESS Output 4 AXI_CLK There are four PFs in the PCIe Controller, where
FLR_IN_PROGRESS[0, 1, 2, 3] correlates to PF[0, 1, 2, 3], respectively.
The PCIe Controller asserts FLR_IN_PROGRESS[n] to indicate the PF
that received FLR.
Example:
When the PCIe Controller asserts FLR_IN_PROGRESS[3], it signals that
PF[3] is currently performing an FLR. FLR_IN_PROGRESS[3] remains
asserted until the PCIe Controller receives the FLR_DONE[3] assertion
from the user. The subsequent de-assertion of FLR_IN_PROGRESS[3]
indicates that the FLR process for PF3 has finished.

Note: When a PF undergoes an FLR, all the associated VFs
undergo the FLR too.

VF_FLR_IN_
PROGRESS

Output 64 AXI_CLK There are 64 VFs in the PCIe Controller, where
VF_FLR_IN_PROGRESS[0, 1, ..., 63] correlates to VF[0, 1, …, 63],
respectively. The PCIe Controller asserts VF_FLR_IN_PROGRESS[n] to
indicate the nth VF received FLR. VF_FLR_IN_PROGRESS[n] remains
asserted until the PCIe Controller receives the VF_FLR_DONE[n]
assertion from the user. The de-assertion of VF_FLR_IN_PROGRESS[n]
marks the completion of FLR in the nth VF.

FLR_DONE Input 4 AXI_CLK When FLR_IN_PROGRESS[n] asserts, you need to clear any
pending transactions associated with the PF/VF being reset.
Then, assert FLR_DONE[n] and hold FLR_DONE[n] high until
FLR_IN_PROGRESS[n] finishes de-asserting.

VF_FLR_DONE Input 64 AXI_CLK When VF_FLR_IN_PROGRESS[n] asserts, you need to clear any
pending transactions associated with the VF being reset. Then,
assert VF_FLR_DONE[n] and hold VF_FLR_DONE[n] high until
FLR_IN_PROGRESS[n] finishes de-asserting.

Configuration Snoop Interface Signals
Table 70: Configuration Snoop Interface

Signal Direction Width Clock
Domain

Description

CONFIG_READ_DATA Input 32 AXI_CLK The client can provide data from an externally
implemented configuration register to the
PCIe Controller using this bus. If the client
has set CONFIG_READ_DATA_VALID,
the PCIe Controller samples this data on
the next positive clock edge after it sets
CONFIG_READ_RECEIVED high.

CONFIG_READ_DATA_PAR Input 4 AXI_CLK Contains the end-to-end parity for
CONFIG_READ_DATA.

www.elitestek.com 105

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

CONFIG_READ_DATA_VALID Input 1 AXI_CLK The client asserts this input to the PCIe Controller
to supply data from an externally implemented
configuration register. The PCIe Controller
samples this input data on the next positive clock
edge after it sets CONFIG_READ_RECEIVED
high.
If the PCIe Controller detects this input is
asserted, it uses the data supplied on the
CONFIG_READ_DATA bus as the completion
payload for the received configuration read
request.
You can extend the timing of this signal by
programming the Debug Mux Control 2 Register.
See Configuration Snoop Interface on page 80
for timing diagrams.

CONFIG_READ_RECEIVED Output 1 AXI_CLK The PCIe Controller generates a one clock cycle
pulse on this output when receives a configuration
read request from the link.

CONFIG_REG_NUM Output 10 AXI_CLK The 10-bit address of the configuration
register being read or written. The data is
valid when CONFIG_READ_RECEIVED or
CONFIG_WRITE_RECEIVED is high.

CONFIG_WRITE_BYTE_ENABLE Output 4 AXI_CLK Byte enables for a configuration write transaction.

CONFIG_WRITE_BYTE_ENABLE_PAR Output 1 AXI_CLK Contains the end-to-end parity for
CONFIG_WRITE_BYTE_ENABLE.

CONFIG_WRITE_DATA Output 32 AXI_CLK Data being written to a configuration register. This
output is valid when CONFIG_WRITE_RECEIVED
is high.

CONFIG_WRITE_DATA_PAR Output 4 AXI_CLK Contains the end-to-end parity for
CONFIG_WRITE_DATA.

CONFIG_WRITE_RECEIVED Output 1 AXI_CLK The PCIe Controller generates a one clock
cycle pulse on this output when it has received
configuration write request from the link.

CONFIG_FUNCTION_NUM Output 8 AXI_CLK Function number.

Vendor Specific (VSEC) Interface Signals
Table 71: Vendor Specific (VSEC) Interface

Signal Direction Width Clock
Domain

Description

F0_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific Control
Register bits [7:0] in the PF0 Vendor-Specific
Capability Structure. The setting does not affect the
operation of the PCIe Controller.

F1_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific Control
Register bits [7:0] in the PF1 Vendor-Specific
Capability Structure. The setting does not affect the
operation of the PCIe Controller.

F2_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific Control
Register bits [7:0] in the PF2 Vendor-Specific
Capability Structure. The setting does not affect the
operation of the PCIe Controller.

F3_VSEC_CONTROL_IN Input 8 AXI_CLK Read the input state from Vendor-Specific Control
Register bits [7:0] in the PF3 Vendor-Specific
Capability Structure. The setting does not affect the
operation of the PCIe Controller.

www.elitestek.com 106

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

F0_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register bit [8] in
the PF0 Vendor-Specific Capability Structure. The
host can use it to signal a software-driven interrupt to
the application logic outside the PCIe Controller.

F1_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register bit [8] in
the PF1 Vendor-Specific Capability Structure. The
host can use it to signal a software-driven interrupt to
the application logic outside the PCIe Controller.

F2_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register bit [8] in
the PF2 Vendor-Specific Capability Structure. The
host can use it to signal a software-driven interrupt to
the application logic outside the PCIe Controller.

F3_VSEC_INTERRUPT_OUT Output 1 AXI_CLK Driven by Vendor-Specific Control Register bit [8] in
the PF3 Vendor-Specific Capability Structure. The
host can use it to signal a software-driven interrupt to
the application logic outside the PCIe Controller.

Power Management Interface Signals
Refer to Power Management on page 66 for a description of the PCIe Controller's power
management capabilities.

Table 72: Power Management interface

Signal Direction Width Clock
Domain

Description

CLIENT_REQ_EXIT_L1 Input 1 Asynchronous This signal triggers an exit to L0 from L1 or from
L1-substates. This signal can also block L1 entry in
endpoint mode. The client can trigger an explicit L1
exit by asserting this signal.
You can drive this signal from the PM_CLK, core
clock, or AXI_CLK domains, depending on hyour
configuration.
It is synchronized inside the PCIe Controller before
use.

CLIENT_REQ_EXIT_L2 Input 1 AXI_CLK The client can only assert this input in the short
interval of time after the link enters L2 and before
the system is powered off. While the power and
clocks are on, the client can assert this input to
initiate an exit from L2.Idle detect.

REQ_PM_TRANSITION_L23_READY Input 1 AXI_CLK In the PCIe Controller is in endpoint mode,
the client can assert this input to transition the
PCIe Controller's power management state to
L23_READY (see PCIe specifications chapter 5 for
a detailed description of power management).
This transition happens after the PCIe Controller's
functions are in the D3 state and after the client has
acknowledged the PME_Turn_Off message from
the root rort. Asserting this input causes the link to
transition to the L2 state and requires a power-on
reset to resume operation.
You can hardwire this signal to 0 if the link does not
need to transition to L2.
This input is not used in the root port mode.

www.elitestek.com 107

TJ-Series PCIe Controller User Guide

Signal Direction Width Clock
Domain

Description

POWER_STATE_CHANGE_ACK Input 1 AXI_CLK When it is ready to transition to the low-power
state requested by the configuration write
request, the client must assert this input for
one clock cycle in response to the assertion of
POWER_STATE_CHANGE_INTERRUPT. The
client can keep this input high if it does not need
to delay the return of the completions for the
configuration write transactions causing power-state
changes.

FUNCTION_POWER_STATE Output 12 AXI_CLK These outputs provide the current power state
of the PFs. Bits [2:0] capture the power state of
function 0, bits [5:3] capture that of function 1, and
so on. The possible power states are:
000: D0_uninitialized
001: D0_active
010: D1
100: D3hot

PCIE_LINK_POWER_STATE Output 4 AXI_CLK Current power state of the PCIe link.
0001: L0
0010: L0s
0100: L1
1000: L2

POWER_STATE_CHANGE_
INTERRUPT

Output 1 AXI_CLK The PCIe Controller asserts this output when
the power state of a PF or VF is changing to
the D1 or D3 states by a write into its Power
Management Control Register. The PCIe Controller
keeps this output high until the client asserts the
POWER_STATE_CHANGE_ACK input.
While this signal is high, the the PCIe Controller will
not return completions for any pending configuration
read or write transactions it receives. The intent is
to delay the completion for the configuration write
transaction that caused the state change until the
client is ready to transition to the low power state.
When this signal is high, the function
number associated with the configuration
write transaction is provided on the
POWER_STATE_CHANGE_FUNCTION_
NUM[7:0] output. When the client asserts
POWER_STATE_CHANGE_ACK, the new
state of the function that underwent the state
change is reflected on the PCIe Controller's
FUNCTION_POWER_STATE (for PFs) or the
VF_POWER_STATE (for VFs) outputs.

POWER_STATE_CHANGE_
FUNCTION_NUM

Output 8 AXI_CLK Number of the function for which a power state
change occurred.

DPA_INTERRUPT Output 4 AXI_CLK The PCIe Controller generates a one clock cycle
pulse on one of these outputs when a configuration
write transaction writes into the Dynamic Power
Allocation Control Register to modify the device's
DPA power state.
[0] A pulse indicates a DPA event for PF0.
[1] A pulse indicates a DPA event for PF1
and so on.
The endpoitnt's software running must read the
corresponding function's DPA control register to
determine the DPA substate requested by the host
and set the device's power state of the device.
These outputs are not active in root port mode.

www.elitestek.com 108

TJ-Series PCIe Controller User Guide

L1 Interface Signals
Table 73: L1 Interface

Signal Direction Width Clock
Domain

Description

CLIENT_REQ_EXIT_L1 Input 1 Async Client logic can trigger an explicit L1 exit by asserting this signal.
This signal triggers an exit to L0 from L1 or from L1 substates. This
signal can also be used to block L1 entry in endpoint mode.
You can drive this signal from the PM_CLK, core clock, or
AXI_CLK domain depending on your configuration.
It is synchronized inside the PCIe Controller before use.

L1 Substate Interface Signals
Refer to L1 Power Substates on page 69 for a description of the L1 substate interface

Table 74: L1 Substrate Interface

Signal Direction Width Clock
Domain

Description

CLKREQ_IN_N Input 1 Async This asynchronous input must be connected to the
shared CLKREQ# bus, so that its state reflects the
combined effect of the upstream and downstream
interfaces' CLKREQ# outputs. The PCIe Controller
samples this input on the positive edge of PM_CLK.

CLIENT_REQ_EXIT_L1_SUBSTATE Input 1 PM_CLK Client logic can trigger an explicit L1 substate exit
by asserting this signal. This signal triggers an exit
from L1 substates to L0 if the PCIe Controller is
already in an L1 substate.
The PCIe Controller waits in L1 state for this signal
to be de-asserted before entering an L1 substate.
The PCIe Controller responds to normal L1 exit
triggers while it waits for this signal to de-assert.

L1_PM_SUBSTATE_OUT Output 3 PM_CLK This output provides the current state of the L1
PM substates state machine. This output is in the
PM_CLK clock domain. Its encodings are:
000: L1-substate machine not active
001: L1.0 substate. Shown after the delay
programmed in the L1 substate entry delay field in
the Low Power Debug Control Register 0
010: L1.1 substate
011: Reserved
100: L1.2.Entry substate
101: L1.2.Idle substate
110: L1.2.Exit substate
111: Reserved

CLKREQ_OUT_N Output 1 PM_CLK The PCIe Controller asserts this output in the
L1 substates when the core clock can be turned
off. You drive this output from the PM_CLK clock
domain. You can use it to enable the tri-state driver
for the device's CLKREQ# output.

www.elitestek.com 109

TJ-Series PCIe Controller User Guide

APB Interface Signals
Table 75: APB interface

Signal Direction Width Clock Domain Description

USER_APB_PADDR Input 24 USER_APB_CLK APB address bus. The address is the byte
address of the PCIe configuration space or local
management space registers.

USER_APB_PSEL Input 1 USER_APB_CLK Select. It indicates that the slave device is
selected and that a data transfer is required. Each
slave has a PSELx signal.

USER_APB_PENABLE Input 1 USER_APB_CLK Enable. This signal indicates the second and
subsequent cycles of an APB transfer.

USER_APB_PWRITE Input 1 USER_APB_CLK Read or writee access.
High: APB write access.
Low: APB read access.

USER_APB_PWDATA Input 32 USER_APB_CLK Write data. Only used when USER_APB_PWRITE
is high.

USER_APB_PWDATA_PAR Input 4 USER_APB_CLK Contains the end-to-end parity for
USER_APB_PWDATA.

USER_APB_PSTRB Input 4 USER_APB_CLK Write the strobe signal to enable sparse data
transfer on the write data bus.

USER_APB_PSTRB_PAR Input 1 USER_APB_CLK Contains the end-to-end parity for
USER_APB_PSTRB.

USER_APB_PRDATA Output 32 USER_APB_CLK Read data. Only applies when
USER_APB_PWRITE is low.

USER_APB_PRDATA_PAR Output 4 USER_APB_CLK Contains the end-to-end parity for
USER_APB_PRDATA. Odd parity is computed for
every byte of the data and propagated through the
PCIe Controller for end-to-end parity protection.

USER_APB_PREADY Output 1 USER_APB_CLK Ready. The slave uses this signal to extend an
APB transfer.

www.elitestek.com 110

TJ-Series PCIe Controller User Guide

Appendix A: Acronyms and Abbreviations
Table 76: Acronyms and Abbreviations

Term Definition

AER Advanced Error Reporting

ARI Alternative Routing-ID Interpretation

ASPM Active-state power management

AXI Advanced eXtensible Interface

EP Endpoint

PCIe Peripheral Component Interface Express

PNP Posted/Non-Posted

SOP Start Of Packet

EOP End Of Packet

CRC Cyclic Redundancy Check

LCRC Link Cyclic Redundancy Check

DLLP Data Link Layer Packet

LTSSM Link Training and Status State Machine

TLP Transaction Layer Packet

AER Advanced Error Reporting

FLR Function-Level Reset

PBA Pending Bit Array

MSI Message-Signaled Interrupt

OS Ordered Set

ASPM Active State Power Management

UR Unsupported request

LTR Latency Tolerance Reporting

PTM Precision Time Measurement

RP Root Port

OBFF Optimized Buffer Flush/Fill

IDO ID-based Ordering

VC Virtual Channel

Register notation

R Read Only for Software Root Complex.

RW The software can read or write. Write access to configuration registers through the local management
interface.

WOCLR Software has to write a 1 to clear. The PCIe Controller sets the bit and software clears the bit.

R/WOCLR The software can read or write. The software has to write a 1 to clear. The PCIe Controller sets the bit and
software clears the bit.

W Write Only Register Field. A read will return 00s.

www.elitestek.com 111

TJ-Series PCIe Controller User Guide

Appendix B: Error Handling
The PCIe Controller has the following registers to report error status:

Table 77: Error Status Registers

Register Location Per Function?

Status Register PCI-Compatible Configuration Space Yes

Device Status Register PCI Express Capability Structure Yes

AER Uncorrectable
Error Status Register

PCIe Configuration Space Yes

AER Correctable
Error Status Register

PCIe Configuration Space Yes

Local Error Status Register Local Management Space N.A.
Reports errors that are not covered

in PCIe configuration space.

The PCIe Controller implements the following to report error conditions:
● NON_FATAL_ERROR_OUT—This pulse output is asserted if the PCIe Controller

detects an unmasked AER uncorrectable error with non-fatal severity.
● FATAL_ERROR_OUT—This pulse output is asserted if the PCIe Controller detects an

unmasked AER uncorrectable error with fatal severity.
● CORRECTABLE_ERROR_OUT—This pulse output is asserted if the PCIe Controller

detects an unmasked AER correctable error.
● LOCAL_INTERRUPT—This is level-output is asserted if the PCIe Controller detects an

unmasked error in the Local Error Status Register.

In endpoint mode, the PCIe Controller transmits the appropriate ERR_COR, ERR_NON_FATAL, or
ERR_FATAL error messages when it detects an unmasked AER error.

Non-Fatal Errors
In some cases the agent that detects a non-fatal error is not the most appropriate one to
determine whether the error is recoverable or not, or if it even needs a recovery action. The
PCIe Controller handles the following errors as advisory non-fatal as recommended by the PCIe
specification:

● Unsupported Non-Posted Request Received
● Unexpected Completion Received
● Poisoned Completion TLP Received
● Poisoned Vendor Defined Msg with Data TLP Received
● Poisoned MWr, IOWr, or MsgD Request TLP received. Per PCIe specification section

2.7.2.2, if these requests target a control register or control structure, they must be
handled as uncorrectable and not as advisory non-fatal. The PCIe Controller cannot
determine if these requests target a control or a data structure in the system., Therefore,
it uses the Poisoned TLP Received Advisory Non-Fatal bit in the Debug Mux Control 2
Register as follows:

— When 0 (default), the PCIe Controller reports poisoned MWr, IOWr, MsgD as
uncorrectable.

— When 1, the PCIe Controller reports poisoned MWr, IOWr, MsgD as advisory
non-fatal.

● Completion Timeout (with Completion Timeout Advisory Non-Fatal bit set to 1 in the
Debug Mux Control 2 Register). A completion timeout should always be reported
as advisory non-fatal as recommended by the PCIe specification. The Completion

www.elitestek.com 112

TJ-Series PCIe Controller User Guide

Timeout Advisory Non-Fatal bit in the Debug Mux Control 2 Register is provided only for
debugging purposes. You should not change this bit from its default value.

Table 78: Error Handling: Advisory Non-Fatal Errors

Except as noted, these errors result in an ERROR_OUT of FATAL/ CORRECTABLE_ERROR_OUT, based on the severity and mask.

Error Case AXI Interface Response Error Status
Registers and Bits

Client Action Local
Interrupt

Unsupported Non-Posted
Request Received

Not delivered to the
PCIe Controller's
AXI interface. The
PCIe Controller detects this
error internally and responds
with UR status.

Unsupported Request
Error Status bit in AER
Uncorrectable Error Status
Register.

None required. No

Poisoned Completion TLP
Received

Reports SLVERR
to the AXI slave
MASTER_AXI_RRESP.

Poisoned TLP Status bit in
AER Uncorrectable Status
Register.
Detected parity Error bit in
Command Status Register.

Client should ignore the
completion data because
it is poisoned. Client can
retry the read request after
the read data is completely
received.

No

Poisoned MWr, MsgD
Request TLP Received
(Poisoned TLP Received
Advisory Non-Fatal bit set
to 1 in Debug Mux Control 2
Register)

Not delivered to the
PCIe Controller's AXI
interface. The request is
discarded internally.

Poisoned TLP Status bit in
AER Uncorrectable Status
Register.
Detected parity Error bit in
Command Status Register.

None required. No

Poisoned IOWr Request
TLP Received
(Poisoned TLP Received
Advisory Non-Fatal bit set
to 1 in Debug Mux Control 2
Register)

Not delivered to the
PCIe Controller's
AXI interface. The
PCIe Controller responds
internally with UR status.

Poisoned TLP Status bit in
AER Uncorrectable Status
Register.
Detected parity Error bit in
Command Status Register.

None required. No

Poisoned Vendor Defined
Msg with Data TLP
Received

Not delivered to the
PCIe Controller's AXI
interface. The request is
discarded internally.

Poisoned TLP Status bit in
AER Uncorrectable Status
Register.
Detected parity Error bit in
Command Status Register.

None required. No

Completion Timeout
(Completion Timeout
Advisory Non-Fatal bit set
to 1 in Debug Mux Control 2
Register)

Reports SLVERR
to the AXI slave
MASTER_AXI_RRESP.

Completion Timeout Status
bit in AER Uncorrectable
Error Status Register and
Local Error Status Register.

Client can retry the request. Yes

Unexpected Completion
Received

Not delivered to the
PCIe Controller's AXI
interface.

Unexpected Completion
Received Status bit in AER
Uncorrectable Error Status
Register and Local Error
Status Register.

None required. Yes

Requester Received
Completion with CA status
Error out: NIL

Reports SLVERR
to the AXI slave
MASTER_AXI_RRESP.

Received Target Abort
Status bit in Command and
Status Register.

Client should ignore the
read data.

No

Table 79: Error Handling: Uncorrectable Errors

These errors result in an ERROR_OUT of FATAL/NON_FATAL_ERROR_OUT, based on the severity and mask.

Error Case AXI Interface Response Error Status Registers and Bits Client Action Local
Interrupt?

Unsupported Posted Request
Received

Not delivered to the
PCIe Controller's AXI interface.
The PCIe Controller detects this
error internally and responds with
UR status.

Unsupported Request Error
Status bit in AER Uncorrectable
Error Status Register.

None required. No

www.elitestek.com 113

TJ-Series PCIe Controller User Guide

Error Case AXI Interface Response Error Status Registers and Bits Client Action Local
Interrupt?

Poisoned CfgWr Request TLP
Received

Not delivered to the
PCIe Controller's AXI interface.
The PCIe Controller detects this
error internally and responds with
UR status.

Poisoned TLP Status bit in AER
Uncorrectable Status Register.
Detected Parity Error bit in
Command Status Register.

None required. No

Poisoned IOWr Request TLP
Received
(Poisoned TLP Received
Advisory Non-Fatal bit set to 0 in
Debug Mux Control 2 Register)

Not delivered to the
PCIe Controller's AXI interface.
The PCIe Controller detects this
error internally and responds with
UR status.

Poisoned TLP Status bit in AER
Uncorrectable Status Register.
Detected Parity Error bit in
Command Status Register.

None required. No

Poisoned MWr, MsgD Request
TLP Received
(Poisoned TLP Received
Advisory Non-Fatal bit set to 0 in
Debug Mux Control 2 Register)

Not delivered to the
PCIe Controller's AXI interface.
Request is discarded internally.

Poisoned TLP Status bit in AER
Uncorrectable Status Register.
Detected Parity Error bit in
Command Status Register.

None required. No

Uncorrectable RAM ECC Errors RAM ECC Errors in the RX path
result in SLVERR on the AXI
interface. On TX path, the AXI
response can be SLVERR or OK.

Uncorrectable Internal Error bit in
AER Uncorrectable Error Status
Register and bits in Local Error
Status Register.

Reset upon
interrupt.

Yes

Request with Unmapped TC
Received

Not delivered to the
PCIe Controller's AXI interface.
Internally handled as a
malformed TLP request.

Malformed TLP Received Status
bit in AER Uncorrectable Error
Status Register.

None required. Yes

PNP RX FIFO Overflow The AXI interface does not
receive the packet that caused
the overflow.

PNP RX FIFO Overflow bits in
Local Error Status Register.
Receiver Overflow Status bit in
AER Uncorrectable Error Status
register.

Reset Yes

Completion RX FIFO Overflow The AXI interface drops the
completion that caused the
overflow.

Receiver Overflow Status bit in
AER Uncorrectable Error Status
Register.
Receiver Overflow Status bit in
AER Uncorrectable Error Status
register.

Reset Yes

End to End Parity Error on
Transmit Path

If an outbound TLP has an end-
to-end parity error, the TLP is
dropped internally or nullified.
The AXI interface does not
respond with SLVERR for the
same TLP at the AXI slave.

Uncorrectable Internal Error bit in
AER Uncorrectable Error Status
Register.
End to End Parity Error in Local
Error Status Register.

Reset upon
interrupt.

Yes

End to End Parity Error on
Receive Path

If an inbound TLP has a
end-to-end parity error, the
PCIe Controller forwards the TLP
to the AXI master with errored
parity.

Uncorrectable Internal Error bit in
AER Uncorrectable Error Status
Register.
End to End Parity Error in Local
Error Status Register.

Reset upon
interrupt.

Yes

ECRC Error Not delivered to the
PCIe Controller's AXI interface.
Request is discarded internally.

ECRC Error Status bit in AER
Uncorrectable Error Status
Register.

None required. No

Flow Control Error No effect. Flow Control Error bit in AER
Uncorrectable Error Status
Register and in Local Error Status
Register.

None required. Yes

Malformed TLP Received Not delivered to the
PCIe Controller's AXI interface.
Request is discarded internally.

Malformed TLP Received Status
bit in AER Uncorrectable Error
Status Register.

None required. Yes

Data Link Protocol Error Status No effect. Data Link Protocol Error Status
bit in AER Uncorrectable Error
Status Register.

None required. No

Table 80: Error Handling: Correctable Errors

These errors result in an ERROR_OUT of CORRECTABLE_ERROR_OUT, based on the severity and mask.

www.elitestek.com 114

TJ-Series PCIe Controller User Guide

Error Case AXI Interface
Response

Error Status Registers and Bits Client Action Local
Interrupt?

Header Log Overflow No effect. Header Log Overflow Status bit in AER
Correctable Error Status Register.

Client needs to read
the header log and
clear the AER error
status registers.

No

Correctable ECC
error

No effect. Corrected Internal Error Status in AER
Correctable Error Status Register.

None required. No

Replay Timeout No effect. Replay Timeout bit in AER Correctable
Error Status Register and Local Error Status
Register.

None required. Yes

Replay Num Rollover No effect. Replay Num Rollover bit in AER Correctable
Error Status Register and Local Error Status
Register.

None required. Yes

PHY Layer Errors No effect. PHY Error Detected bit in AER Correctable
Error Status Register and Local Error Status
Register.

None required. Yes

TLP LCRC Errors No effect. Bad TLP Status bit in AER Correctable Error
Status Register.

None required. No

DLLP LCRC Error No effect. Bad DLLP Status bit in AER Correctable Error
Status Register.

None required. No

Table 81: Error Handling: Other Errors

These errors result in an ERROR_OUT of NIL.

Error Case AXI Interface Response Error Status
Registers and Bits

Client Action Local
Interrupt?

Client sends SLVERR with
TARGET_ AXI_RRESP

SLVERR sent from
TARGET_AXI_RRESP

Signaled Target Abort bit
in Command and Status
Register.

Client sends abort by
sending SLVERR on
TARGET_ AXI_RRESP.

No

Outbound MemWr TLP
Poisoned

The AXI interface returns
OK (2'd0) response. TLP is
be transmitted on the link
with the endpoint bit set.

Master Data Parity Error
bit in Command and Status
Register.

None required. No

Function-Level Reset from
Host

The PCIe Controller asserts
FLR_IN_PROGRESS for
the affected function's
VF_FLR_IN_PROGRESS
for the VFs.

Function-Level Reset bit in
PCI Express Device Control
and Status Register.

Client must assert
FLR_DONE.

No

Link Down Reset Asserts the
LINK_DOWN_RESET_
OUT signal for eight clock
cycles.

Link Down Indication bit in
AXI Configuration Registers.

Client must reset the link
down indication bit after
clearing all outstanding
requests.

No

Multiple Errors
When multiple errors are detected in a single TLP, the PCIe specification recommends that a
single error be reported. The precedence of errors the PCIe Controller reports is (from highest to
lowest):

1. Uncorrectable Internal Error
2. Receiver Overflow
3. Flow Control Protocol Error
4. Malformed TLP
5. ECRC Check Failed
6. Unsupported Request (UR), Completer Abort (CA), or Unexpected Completion
7. Poisoned TLP Received

www.elitestek.com 115

TJ-Series PCIe Controller User Guide

Multiple-Error Scenarios
A multiple-error scenarios has a mix of uncorrectable and advisory non-fatal errors in a single
TLP. The error precedence determines which error is reported when the PCIe Controller detects
multiple errors. However, if the higher precedence error is advisory and the lower precedence
error is not, the reported error should not actually be advisory.

Per PCIe specification section 2.7.2.2, the PCIe Controller these error combinations:

● AtomicOp request that is poisoned as well as unsupported—The PCIe Controller reports it as an
unsupported request received error because of the higher precedence. However, because it is also
poisoned, the PCIe Controller reports it as an uncorrectable error and not as advisory non-fatal.CfgWr

● For a request that is poisoned as well as unsupported—The PCIe Controller reports it as an
unsupported request received error because of the higher precedence. However, because it is also
poisoned, it is reported as an uncorrectable error and not as advisory non-fatal.

● For a MWr, IOWr, or MsgD request that is poisoned as well as unsupported—The PCIe Controller
reports it as an unsupported request received error because of the higher precedence. If the Poisoned
TLP Received Advisory Non Fatal bit is set to 0 in the Debug Mux Control 2 Register, it is reported as
an uncorrectable error and not as advisory non-fatal.

www.elitestek.com 116

TJ-Series PCIe Controller User Guide

Appendix C: LTSSM State Encoding
The following table provides the LTSSM state encoding for the PCIe Controller's LTSSM_STATE
output signal as well the state read from the Physical Layer Configuration Register 0.

Table 82: LTSSM State Encoding

LTSSM State Name Register Value (Hex)

Detect.Quiet 00

Detect.Active 01

Polling.Active 02

Polling.Compliance 03

Polling.Configuration 04

Configuration.Linkwidth.Start 05

Configuration.Linkwidth.Accept 06

Configuration.Lanenum.Accept 07

Configuration.Lanenum.Wait 08

Configuration.Complete 09

Configuration.Idle 0A

Recovery.RcvrLock 0B

Recovery.Speed 0C

Recovery.RcvrCfg 0D

Recovery.Idle 0E

L0 10

Rx_L0s.Entry 11

Rx_L0s.Idle 12

Rx_L0s.FTS 13

Tx_L0s.Entry 14

Tx_L0s.Idle 15

Tx_L0s.FTS 16

L1.Entry 17

L1.Idle 18

L2.Idle 19

L2.TransmitWake 1A

Disabled 20

Loopback.Entry (Master) 21

Loopback.Active (Master) 22

Loopback.Exit (Master) 23

Loopback.Entry (Slave) 24

Loopback.Active (Slave) 25

Loopback.Exit (Slave) 26

Hot Reset 27

Recovery.Equalization, Phase 0 28

Recovery.Equalization, Phase 1 29

Recovery.Equalization, Phase 2 2A

www.elitestek.com 117

TJ-Series PCIe Controller User Guide

LTSSM State Name Register Value (Hex)

Recovery.Equalization, Phase 3 2B

www.elitestek.com 118

TJ-Series PCIe Controller User Guide

Appendix D: PCIe Configuration Capabilities
Linked List

The following figure shows the PCIe Controller Capabilities Linked List implementation. Note
that:

● Each bubble shows the address offset for each capability structure.
● The address offsets are all 12 bits.

Figure 45: Configuration Capabilities

PCI PM
0x080

MSI
0x090

MSIX
0x0B0

PCIE CAP
0x0C0

AER
0x100

ARI
0x140

DEVICE SERIAL
NUMBER CAP

0x150

POWER
BUDGETING
CAP 0x160

RESIZABLE BAR
CAP

0x180
LTR CAP

0x1B8

DPA CAP
0x1C0

SRIOV
0x200

TPH REQ CAP
0x274

PCIE SECONDAR Y
EXTENDED CAP

0x300

PASID
0x440

MPCIE CAP
0x480

ATS CAP
0x5C0

L1 PM SUBSTAT E
CAP

0x900

DL_FEATUR E
CAP

0x910

ARI_ENABLE
= = 0

SR_IOV_ENABLE
= = 0

RX MARGINING
CAP

0x920

PTM
CAP

0xA20

PC
IE

_G
EN

ER
A

TI
O

N
_S

EL
 <

 3
PL_16GTS

CAP
0x9C0

LAST PTR
0x000

NPEM
CAP

0xA30

VPD
0x088

PL_32GT S
CA P

0xA40

PC
IE

_G
EN

ER
A

TI
O

N
_S

EL
 <

 4

PCI Compatible
Configuration

Space Capabilities

PCIe Extended
Configuration

Space Capabilities

VENDOR
SPECIFIC CAP

0X400

VIRTUAL
CHANNEL CAP

0X4C0

ATS PAGE
REQUEST CAP

0X640

resizable_bar_cap_enable == 0

Dual Mode

Root Complex

Endpoint

Some capability structures may not be selected in this configuration. In that case, the next
capability pointer of the previous selected capability structure points to the next selected
capability structure. For example, if DPA, SR-IOV, or TPH_REQ capabilities are not selected,
the LTR_NEXT_CAPABILITY_POINTER points to the PCIe Secondary Extended Capability
Structure.

Additionally, some capability structures are only visible to the host configuration software if the
corresponding strap input is enabled.

● ARI capability is visible only if the ARI_ENABLE strap input is 1.
● SR-IOV Capability is visible only if the SR_IOV_ENABLE strap input is 1.

If these strap inputs are not enabled, the capability linked list is automatically modified to link the
previous capability with the next capability. These strap inputs must be stable before deasserting
RESET_N, MGMT_RESET_N, or MGMT_STICKY_RESET_N.

Configuration-Specific Capabilities
The following tables show the PF and VF PCIe capabilities.

www.elitestek.com 119

TJ-Series PCIe Controller User Guide

Table 83: Endpoint PF0 PCIe Capabilities List

PCIe Capability Offset (Hex) Notes

PCI PM Capability 0x80 –

MSI Capability 0x90 –

MSI-X Capability 0x0B0 –

PCI Express Capability 0x0C0 –

AER Capability 0x100 –

ARI Capability 0x140 –

Device Serial Number Capability 0x150 –

Power Budgeting Capability 0x160 –

Resizable BAR Capability 0x180 LM Register, Resizable BAR Capability Enable bit:
1: Capability Present
0: Capability Bypassed

LTR Capability 0x1B8 –

DPA Capability 0x1C0 –

SR-IOV Capability 0x200 –

TPH Requester Capability 0x274 –

Secondary PCI Express Extended Capability 0x300 –

Vendor-Specific Capability 0x400 –

PASID Capability 0x440 –

ATS Capability 0x5C0 –

ATS PR Extended Capability 0x640 –

L1 PM Substates Extended Capability 0x900 –

Data Link Feature Extended Capability 0x910 –

Lane Margining Extended Capability 0x920 –

Physical Layer 16.0G Extended Capability 0x9C0 –

Table 84: Endpoint PCIe Capabilities List for PFn (n>0)

PCIe Capability Offset (Hex) Notes

PCI PM Capability 0x80 –

MSI Capability 0x090 –

MSIX Capability 0x0B0 –

PCI Express Capability 0x0C0 –

AER Capability 0x100 –

ARI Capability 0x140 –

Device Serial Number Capability 0x150 –

Power Budgeting Capability 0x160 –

Resizable BAR Capability 0x180 LM Register, Resizable BAR Capability Enable bit:
1: Capability Present
0: Capability Bypassed

DPA Capability 0x1C0 –

SR-IOV Capability 0x200 –

TPH Requester Capability 0x274 –

Vendor-Specific Capability 0x400 –

PASID Capability 0x440 –

ATS Capability 0x5C0 –

www.elitestek.com 120

TJ-Series PCIe Controller User Guide

PCIe Capability Offset (Hex) Notes

ATS PR Extended Capability 0x640 –

Data Link Feature Extended Capability 0x910 –

Table 85: VF0 PCIe Capabilities List

PCIe Capability Offset(hex)

PCI PM Capability 0x80

MSI Capability 0x090

MSIX Capability 0x0B0

PCI Express Capability 0x0C0

AER Capability 0x100

ARI Capability 0x140

TPH Requester Capability 0x274

ATS Capability 0x5C0

Table 86: PCIe Capabilities List for VFn (n>0)

PCIe Capability Offset(hex)

PCI PM Capability 0x80

MSI Capability 0x090

MSIX Capability 0x0B0

PCI Express Capability 0x0C0

AER Capability 0x100

ARI Capability 0x140

TPH Requester Capability 0x274

ATS Capability 0x5C0

www.elitestek.com 121

TJ-Series PCIe Controller User Guide

Appendix E: Supported Chipsets
The functionality of the example design has been tested and verified on the following chipsets.
The negotiated speed and width of the PCIe link is displayed in the table below.

Table 87: Supported Chipsets

Chipset CPU PCIe Slot Negotiated Speed & Width

Intel B360 Intel Core i5-8400 PCI Express
3.0/2.0 x16 slot

Gen3x4

AMD B550M AMD Ryzen 5 5600X PCIE1 slot Gen4x4

AMD B650M AMD Ryzen 7 7700 PCIEX16 slot Gen4x4

Intel H610I Intel Core i3-12100 PCIEX16 slot Gen4x4

AMD X570 AMD Ryzen 9 5900X PCIE3 slot Gen4x4

Intel B760M Intel Core i3-12100 PCIE1 slot Gen4x4

Revision History

Table 88: Document Revision History

Date Version Description

June 2025 1.6 Updated AXI read: TLP (2n and 2n>1, up to 32 Bytes, Unaligned Address) on page 26.
(DOC-2528)
Updated AXI write: AXI Master Write Operation on page 28. (DOC-2528)
Added End-to-End Data Protection on page 31. (DOC-2541).
Updated Clock Sources on page 61. (DOC-2572)
Updated Function-Level Reset Signals on page 105. (DOC-2541)
Updated note in Figure 25: FLR Handshake on page 65. (DOC-2541)

April 2025 1.5 Fixed typos in AXI Master Read Operation on page 25. (DOC-2515)

April 2025 1.4 Added Appendix E: Supported Chipsets on page 122. (DOC-2207)
Update Table 29: AXI Slave Sideband Signal Description (MASTER_AXI_AWUSER and
MASTER_AXI_ARUSER) on page 50. (DOC-2493)

February 2025 1.3 Added note about incompatible clock tolerances for SRIS. (DOC-2265)
Added information on clock sources from PLLs. (DOC-2265)
Clarified supported SPI active configuration details. (DOC-2265)

January 2025 1.2 Updated Interrupt Sideband Signals on page 59.

September 2024 1.1 Corrected link up diagram. (DOC-2043)

July 2024 1.0 Initial release.

www.elitestek.com 122

	Contents
	Introduction
	Features
	Functional Description
	Physical Layer
	SRIS Operation
	RX Lane Margining
	Command Processing (Endpoint)
	Command Processing (Root Port)
	Step Margin Command Execution
	Step Margin Execution Status
	Control SKIP for Lane Margining at Receiver
	Exception Handling
	Command Valid Check
	Command Supported Check
	RX Margining PIPE Interface: Write Ack Timeout
	Link Transition from Gen4 L0 State

	Data Link Layer
	Data Link Feature Exchange
	RX Scaled Flow Control
	TX Scaled Flow Control
	TX Flow Control Error Handling

	Aggregating ACK DLLPs

	Transaction Layer
	AXI Application Layer
	AXI Master Read Operation
	TLP (2 bytes, Aligned Address)
	TLP (2n and 2n>1, up to 32 Bytes, Unaligned Address)
	TLP (Other, up to 32 Bytes)
	TLP Read of Lengths > 32 Bytes
	Error Handling
	AXI ID Handling
	Zero Length Reads
	Non-Contiguous Reads

	AXI Master Write Operation
	Poison Bit Forwarding to AXI
	Error Handling
	AXI ID Management
	Zero-Length Writes
	Non-Contiguous Writes
	Ordering Between Posted and Non-Posted Writes

	End-to-End Data Protection
	Inbound Message Interface
	Message Interface Signals
	Message Interface FIFO Buffer
	Message Interface Codes

	Ordering Between AXI Master Write and Read Channels
	Inbound PCIe to AXI Address Translation (Root Port)
	Inbound PCIe to AXI Address Translation (Endpoint)
	AXI Slave Interface
	Unsupported Request Handling During Enumeration (Rootport)
	AXI Slave Ordering
	Completion Error Handling
	AXI Slave Read Operation
	Tag Management for Non-Posted Transactions
	Error Handling
	AXI ID Management
	Completion Data Ordering
	Error and Decode Errors

	AXI Slave Write Operation
	Error Handling
	AXI ID Management
	Zero-length Writes
	Write Transaction Ordering

	AXI Configuration and Status Registers
	PCIe Controller Outbound Accesses
	Outbound Access Using Regions
	Outbound AXI-to-PCIe Address Translation Registers
	Outbound PCIe Descriptor Registers
	AXI Region Base Address Registers
	Outbound Access through the Sideband Descriptor
	
	
	
	
	

	MSI Memory Writes
	MSI-X Memory Writes

	Outstanding Non-Posted Requests
	Ordering between AXI Slave Write and Read Channels
	Outbound Ordering (Endpoint)
	Outbound Ordering (Root Port)

	Completion Error Codes
	Completion Status Codes

	AXI Master and Slave Read/Write Length Limitations

	Interrupt Interface
	Legacy Interrupt Operation
	MSI and MSI-X Interrupt Modes
	Interrupt Sideband Signals

	Clock Sources
	Link Control
	Link Up
	Link Down and Reset
	Reset Types
	Cold Reset
	Warm Reset
	Hot Reset

	Reset Handshake
	Function-Level Reset (FLR)
	Concurrent FLR Request in Multiple PFs/VFs
	Reset During an FLR

	Power Management
	Function Power States
	L0s Power State
	L1 Power State
	Entering L1 via ASPM
	Entering L1 via PCI-PM
	L1 Exit Triggers
	L1 Register Programming
	Blocking L1 Explicit Client Exit or Endpoint Entry

	L1 Power Substates
	Entering L1 Substate
	Exiting L1 Substate
	L1.1 Operation
	L1.2 Operation
	L1 Substate Register Programming
	Delayed Entry
	Wait for Outstanding Completions before Entry
	Wait for Empty Receive Buffers before Entry
	Prevent Exit During Register Access

	Explicit Client Exit or Entry Block
	Integration Details

	L2 Power State
	Entering L2
	Wake Up or Exiting L2

	Configuring Registers with the APB Interface
	Configuration Snoop Interface
	Vendor-Specific Extended Capability (VSEC)
	Configuration Guide
	AXI Outbound Access Example
	Accessing the Configuration TLP
	Method 1
	Method 2

	Programming the Outbound PCIe Descriptor Register
	Address Translation
	Memory or I/O TLP Access
	Message TLP Access
	Endpoint Autonomous Link Bandwidth Management
	Programming the SR-IOV Registers
	VF Function Number Allocation
	Setting up the VF BAR Registers

	Managing Outbound NP Outstanding Requests and Completion Responses (Endpoint)
	Interface Signals
	Clock Signals
	Reset Interface Signals
	AXI Master Interface Signals
	AXI Slave Interface Signals
	Interrupt Interface Signals
	Message Interface Signals
	Status and Error Indicator Signals
	Function-Level Reset Signals
	Configuration Snoop Interface Signals
	Vendor Specific (VSEC) Interface Signals
	Power Management Interface Signals
	L1 Interface Signals
	L1 Substate Interface Signals
	APB Interface Signals

	Appendix A: Acronyms and Abbreviations
	Appendix B: Error Handling
	Non-Fatal Errors
	Multiple Errors
	Multiple-Error Scenarios

	Appendix C: LTSSM State Encoding
	Appendix D: PCIe Configuration Capabilities Linked List
	Configuration-Specific Capabilities

	Appendix E: Supported Chipsets
	Revision History

